화학공학소재연구정보센터
Nature, Vol.488, No.7409, 106-110, 2012
Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations
Medulloblastomas are themost commonmalignant brain tumours in children(1). Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes ofmedulloblastoma on the basis of transcriptional and copy number profiles(2-5). Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 andTP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, beta-catenin. Together, our study reveals the alteration ofWNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates theRNA helicase DDX3X as a component of pathogenic b-catenin signalling in medulloblastoma.