화학공학소재연구정보센터
Nature, Vol.480, No.7377, 351-354, 2011
Microwave amplification with nanomechanical resonators
The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations(1,2). This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions(3,4). Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force(5-7), and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.