화학공학소재연구정보센터
Nature, Vol.480, No.7375, 109-U278, 2011
Lyn is a redox sensor that mediates leukocyte wound attraction in vivo
Tissue wounding induces the rapid recruitment of leukocytes(1). Wounds and tumours-a type of 'unhealed wound'(2)-generate hydrogen peroxide (H2O2) through an NADPH oxidase (NOX). This extracellular H2O2 mediates recruitment of leukocytes, particularly the first responders of innate immunity, neutrophils, to injured tissue(3-6). However, the sensor that neutrophils use to detect the redox state at wounds is unknown. Here we identify the Src family kinase (SFK) Lyn as a redox sensor that mediates initial neutrophil recruitment to wounds in zebrafish larvae. Lyn activation in neutrophils is dependent on wound-derived H2O2 after tissue injury, and inhibition of Lyn attenuates neutrophil wound recruitment. Inhibition of SFKs also disrupted H2O2-mediated chemotaxis of primary human neutrophils. In vitro analysis identified a single cysteine residue, C466, as being responsible for direct oxidation-mediated activation of Lyn. Furthermore, transgenic-tissue-specific reconstitution with wild-type Lyn and a cysteine mutant revealed that Lyn C466 is important for the neutrophil wound response and downstream signalling in vivo. This is the first identification, to our knowledge, of a physiological redox sensor that mediates leukocyte wound attraction in multicellular organisms.