화학공학소재연구정보센터
Nature, Vol.477, No.7364, 349-U129, 2011
A stress response pathway regulates DNA damage through beta(2)-adrenoreceptors and beta-arrestin-1
The human mind and body respond to stress(1), a state of perceived threat to homeostasis, by activating the sympathetic nervous system and secreting the catecholamines adrenaline and noradrenaline in the 'fight-or-flight' response. The stress response is generally transient because its accompanying effects (for example, immunosuppression, growth inhibition and enhanced catabolism) can be harmful in the long term(2). When chronic, the stress response can be associated with disease symptoms such as peptic ulcers or cardiovascular disorders(3), and epidemiological studies strongly indicate that chronic stress leads to DNA damage(4,5). This stress-induced DNA damage may promote ageing(6), tumorigenesis(4,7), neuropsychiatric conditions(8,9) and miscarriages(10). However, the mechanisms by which these DNA-damage events occur in response to stress are unknown. The stress hormone adrenaline stimulates beta(2)-adrenoreceptors that are expressed throughout the body, including in germline cells and zygotic embryos(11). Activated beta(2)-adrenoreceptors promote Gs-protein-dependent activation of protein kinase A (PKA), followed by the recruitment of beta-arrestins, which desensitize G-protein signalling and function as signal transducers in their own right(12). Here we elucidate a molecular mechanism by which beta-adrenergic catecholamines, acting through both Gs-PKA and beta-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, thus synergistically leading to the accumulation of DNA damage. In mice and in human cell lines, beta-arrestin-1 (ARRB1), activated via beta(2)-adrenoreceptors, facilitates AKT-mediated activation of MDM2 and also promotes MDM2 binding to, and degradation of, p53, by acting as a molecular scaffold. Catecholamine-induced DNA damage is abrogated in Arrb1-knockout (Arrb1(-/-)) mice, which show preserved p53 levels in both the thymus, an organ that responds prominently to acute or chronic stress(1), and in the testes, in which paternal stress may affect the offspring's genome. Our results highlight the emerging role of ARRB1 as an E3-ligase adaptor in the nucleus, and reveal how DNA damage may accumulate in response to chronic stress.