화학공학소재연구정보센터
Particulate Science and Technology, Vol.19, No.2, 145-173, 2001
Measurement of bulk mechanical properties and modeling the load-response of rootzone sands. Part 1: Round and angular monosize and binary mixtures
The bulk mechanical properties of two different types of rootzone Sands (round and angular) were measured using a cubical triaxial tester. Two monosize sands (d(50) = 0.375 mm and 0.675 mm) and their 50:50 binary mixtures (d(50) = 0.500 mm) were studied. The compression, shear, and failure responses of the above-mentioned six compositions were analyzed, compared, and modeled. Two elastic parameters (bulk and shear moduli) and two elastoplastic Parameters (swelling and consolidation indices) of the SLY sand compositions were also calculated and compared. The angular sand was more compressible than round sand during isotropic compression. In addition, the angular sands tended to have lower initial bulk density and high porosity values. Among the three different size fractions, the 0.375 mm mixture was least compressible for both sand shapes. The failure strength and shear modulus of the angular sand were higher than the round sands. In addition, due to their simplicity, phenomenological models were developed to predict the compression and shear behavior of the sands. The prediction models were validated using subangular and subround sands. Average relative difference values were calculated to determine the effectiveness of the prediction models. The mean average relative difference values for compression profiles, i.e., volumetric stress vs. volumetric strain, were from 16% to 39%, except for the initial load-response portion ( < 1% volumetric strain). The predictive models were effective in reproducing the failure responses: at 17.2 kPa confining pressure, the mean of average relative difference was 23%; at 34.5 kPa, the mean difference was 24%.