화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.55, No.1, 57-67, 1995
Influence of Spinning Velocity on Mechanical and Structural Behavior of Pet Nylon-6 Fibers
Influence of spinning velocities on the mechanical and structural properties of polyethylene terephthalate (PET)/nylon 6 blend fibers have been reported. Fibers of PET/nylon 6 containing a small percentage of nylon (5% by weight) have been melt-spun at 3 different spinning velocities (2,900; 3,2000; 3,600 m/min). The fibers have been characterized by thermal, morphological, structural, and mechanical analysis. Various techniques such as SEM, DSC, X-ray diffraction, hot water shrinkage (HWS), viscosity, and birefringence have been used. SEM analysis revealed that in the blend, nylon 6 is well-dispersed as spheres in the PET matrix. The blend shows a marked decrease in the melt-flow index, which in turn leads to a beneficial effect on the rheological properties of the PET without negatively influencing its mechanical characteristics. This finding results in a saving on energetical requirements of the processing, as both temperature and pressure of spinning can be decreased.