화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.5, 474-479, October, 2012
막결합 축전식 탈염장치를 이용한 혼합용액에서 칼슘이온의 선택적 제거
Selective Removal of Calcium Ions from a Mixed Solution using Membrane Capacitive Seionization System
E-mail:
초록
막결합 축전식 탈염(MCDI) 기술을 이용하여 Na+와 Ca2+ 이온이 혼합된 용액에서 Ca2+ 이온의 선택적 제거 가능성을 연구하였다. 양이온교환막인 CMX막에 대한 Ca2+ 이온의 선택성을 확인하기 위해 흡착평형 실험을 실시하였다. 그리고 MCDI 셀을 이용해 혼합용액(5 meq/L NaCl + 2 meq/L CaCl2)에 대한 탈염실험을 수행하였다. 흡착평형 실험결과 용액과 CMX막에서 Ca2+ 이온의 당량분율은 각각 28.6, 87.2%를 보여 CMX막이 Ca2+ 이온에 대해 높은 선택성을 갖는 것을 확인하였다. MCDI 셀에 일정한 전류를 인가하면서 셀 전위가 1.0 V에 도달할 때까지 탈염실험을 실시하였다. 그 결과 흡착된 이온의 총량은 인가한 전류밀도에 큰 영향을 받지 않고 일정하였다. 그러나 흡착된 이온 중 Ca2+ 이온의 비율은 전류밀도에 반비례하였으며 200, 300, 500, 700 A/m2의 전류밀도에서 각각 81.4, 78.4, 77.0, 74.5%로 나타났다. 이러한 결과는 낮은 전류밀도에서 CMX막에 흡착된 Ca2+ 이온의 비율이 높았기 때문인 것으로 판단된다.
Possibility of the selective removal of Ca2+ ions from a mixed solution of Na+ and Ca2+ ions using membrane capacitive deionization (MCDI) was investigated. Adsorption equilibrium experiments were conducted to determine the selectivity of the CMX cation-exchange membrane toward Ca2+ ions. In addition, desalination experiments for a mixed solution (5 meq/L NaCl + 2 meq/L CaCl2) were performed using an MCDI cell. The adsorption equilibrium of CMX embrane showed that the equivalent fraction of Ca2+ ions in the solution and the CMX membrane were 28.6 and 87.2%, respectively, which indicates the CMX membrane’s high selectivity toward Ca2+ ions. Desalination experiments were performed by applying a constant current to the MCDI cell until the cell potential reached 1.0 V. The amount of ions adsorbed did not significantly change as the applied current was changed. However, the equivalent fractions of Ca2+ ions among the adsorbed ions were inversely proportional to the applied currents: 81.4, 78.4, 77.0, and 74.5% at 200, 300, 500, and 700 A/m2 of applied current density, respectively. This result is attributed to the increased fraction of Ca2+ ions adsorbed by the CMX membrane at lower applied current densities.
  1. Welgemoed TJ, Schutte CF, Desalination, 183(1-3), 327 (2005)
  2. Oren Y, Desalination, 228(1-3), 10 (2008)
  3. Biesheuvel PM, J. Colloid Interface Sci., 332(1), 258 (2009)
  4. Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845 (2010)
  5. Zou L, Morris G, Qi D, Desalination, 225(1-3), 329 (2008)
  6. Seo SJ, Jeon H, Lee JK, Kim GY, Park DW, Hojima H, Lee JY, Moon SH, Water Res., 44, 2267 (2010)
  7. Ryoo MW, Seo G, Water. Res., 37, 1527 (2003)
  8. Park BH, Kim YJ, Park JS, Choi J, J. Ind. Eng. Chem., 17(4), 717 (2011)
  9. Gabelich CJ, Tran TD, “MEL” Suffet IH, Environ. Sci.Technol., 36, 3010 (2002)
  10. Ryoo MW, Kim JH, Seo G, J. Colloid Interface Sci., 264(2), 414 (2003)
  11. Li H, Gao Y, Pan L, Zhang Y, Chen Y, Sun Z, Water Res., 42, 4923 (2008)
  12. Li H, Zou L, Pan L, Sun Z, Environ. Sci. Technol., 44, 8692 (2010)
  13. Andelman MD, CA Patent 2444390 (2002)
  14. Lee JB, Park KK, Eum HM, Lee CW, Desalination, 196(1-3), 125 (2006)
  15. Li HB, Zou L, Desalination, 275(1-3), 62 (2011)
  16. Kim YJ, Choi JH, Sep. Purif. Technol., 71(1), 70 (2010)
  17. Kim YJ, Choi JH, Water Res., 44, 990 (2010)
  18. Kim YJ, Choi JH, J. Korean Ind. Eng. Chem., 21, 87 (2010)
  19. Biesheuvel PM, van Limpt B, van der Wal A, J. Phys.Chem. C., 113, 5636 (2009)
  20. Zhao R, Biesheuvel PM, Miedema H, Bruning H, van der Wal A, J. Phys. Chem. Lett., 1, 205 (2010)
  21. Park BH, Choi JH, Electrochim. Acta, 55(8), 2888 (2010)
  22. Strathmann H, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam (2004)