Materials Research Bulletin, Vol.47, No.7, 1653-1660, 2012
Synthesis and characterization of WS2 nanotube supported cobalt catalyst for hydrodesulfurization
WS2 nanostructures hold structural characteristics which suggest they will be suitable for heterogeneous catalysis in the hydrodesulfurization (HDS) process. In this work, WS2 nanotubes (INT-WS2) were coated with cobalt nanoparticles using electroless plating method. Prior to cobalt deposition, the nanotubes surface was activated using palladium seeding process. The deposited cobalt nanoparticles had hcp crystal structure and formed non-uniform layer on the nanotubes surface. The catalytic reactivity of the produced cobalt coated nanotubes toward thiophene decomposition was characterized by an atmospheric flow reactor. The coated nanotubes revealed good catalytic reactivity toward thiophene mineralization. Further, the adsorption kinetics of thiophene on coated INT-WS2 was studied by thermal desorption spectroscopy (TDS). The cobalt coated system was found to be more catalytically active than the pristine INT-WS2 system. This result is promising since further optimization of the nanofabrication process of the catalyst should increase the conversion rates even further. (C) 2012 Published by Elsevier Ltd.
Keywords:Nanostructures;Inorganic compounds;Chemical synthesis;Electron microscopy;Catalytic properties