Materials Research Bulletin, Vol.47, No.1, 59-62, 2012
Synthesis and luminescent properties of spindle-like CaWO4:Sm3+ phosphors
Spindle-like CaWO4:Sm3+ phosphors were prepared via a Polyvinylpyrrolidone (PVP)-assisted sonochemical process, and characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectroscopy (PL). The XRD results suggested that the prepared samples are single-phase. The FE-SEM images indicated that the prepared CaWO4:Sm3+ phosphors are composed of many spindles with maximum average diameter of 150 nm and maximum average length of 500 nm. Under 404 nm excitation, the characteristic emissions corresponding to (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2 and 11/2) transitions of Sm3+ in CaWO4 phosphors were observed. The color coordinates for 1 mol% Sm3+ doped CaWO4 phosphor were calculated to be (0.595, 0.404). The fluorescent concentration quenching of Sm3+ doped spindle-like phosphors was studied based on the Van Uitert's model, and it was found that the electric dipole-dipole (D-D) interaction is the dominant energy transfer mechanism between Sm3+ ions in the CaWO4:Sm3+ phosphors. The critical energy transfer distance was estimated. (C) 2011 Elsevier Ltd. All rights reserved.