화학공학소재연구정보센터
Materials Research Bulletin, Vol.44, No.2, 472-477, 2009
Large-scale synthesis of Li1.2V3O8 as a cathode material for lithium secondary battery via a soft chemistry route
Layered Li1.2V3O8 has been efficiently prepared via a sol-gel method. XRD and particle size analysis indicate that the final product with monoclinic structure consists of homogeneously distributed particles whose sizes are in a very narrow range. There are two different water molecules in the compound according to TGA and DTA. The structural water works as a pillar in the structure and is lost at higher temperature than the combined water. The as-prepared material was also compared with the one synthesized from the conventional solid-state method in terms of their morphology, electrochemistry capacity and electrodynamic characteristics. As a result, the Li1.2V3O8 obtained at 300 degrees C for 10 h has excellent electrochemical properties. A high-first discharge capacity of 286.4 mAh/g was observed at a current rate of C/5 between 1.7 and 3.8 V and the structure of Li1.2V3O8 remains stable in the subsequent cycles. EIS calculation suggests a better diffusion path for lithium ions in as-prepared material than in the solid-state compound. (C) 2008 Elsevier Ltd. All rights reserved.