Journal of Solar Energy Engineering-Transactions of The ASME, Vol.128, No.2, 134-138, 2006
Double-walled reactor tube with molten salt thermal storage for solar tubular reformers
This paper proposes a novel-type of "double-walled" reactor tube with molten-salt thermal storage at high temperatures for use in solar tubular reformers. The prototype reactor tube is demonstrated on the heat-discharge and chemical reaction performances during cooling mode of the reactor tube at laboratory scale. The Na2CO3 composite material with MgO ceramics was filled into the outer annulus of the double-walled reactor tube while the Ru-based catalyst particles were filled into the inner tube. The heat discharge form the molten Na2CO3 circumvented the rapid temperature change of the catalyst bed, which resulted in the alleviation of decrease in chemical conversion during cooling mode of the reactor tube. The application of the new reactor tribes to solar tubular reformers is expected to help realize stable operation of the solar reforming process under fluctuating insolation during a cloud passage.
Keywords:hydrogen production;solar heat;natural gas reforming;tubular reformer;molten salt thermal storage