화학공학소재연구정보센터
Journal of Chemical and Engineering Data, Vol.51, No.2, 686-690, 2006
Phase behavior of binary and ternary systems involving carbon dioxide, propane, and glycidyl methacrylate at high pressure
This work reports experimental phase equilibrium data of binary and ternary systems involving carbon dioxide, propane, and glycidyl methacrylate (GMA). Phase equilibrium experimental data were obtained according to the static synthetic method using a variable volume view cell. The experiments covered the temperature range of (303 to 343) K, pressures up to 13 MPa, at several overall compositions. The experimental data were modeled with the Peng-Robinson equation of state (PR-EoS) with the conventional quadratic mixing rules. The EoS interaction parameters were fitted from binary systems and then used to predict the phase behavior of the ternary system. The results showed that, in the experimental range investigated, only vapor-liquid transitions were found and that the PR-EoS was capable of satisfactorily representing the experimental data.