화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.24, No.3, 171-180, September, 2012
An experimental investigation on the normal force behavior of magnetorheological suspensions
E-mail:
In this work the normal force behavior of magnetorheological suspensions are systematically investigated. Four magnetorheological suspensions with different volume fractions (10%, 20%, 30%, and 40%) are prepared and both the static and dynamic normal forces of the samples are measured by using a commercial plate-plate magneto-rheometer under constant and sweeping magnetic field. A positive normal force will be generated when the applied magnetic field exceeds a critical value. The normal force firstly increases with the increasing of magnetic field strength and then reaches a saturation value. A magnetization model is utilized to represent this mechanism. The oscillatory dynamic normal forces with time are studied and their changes with shear rates are dependent on the volume fraction. Comparisons between static and dynamic normal forces show that the differences between them are dependent on the volume fraction and magnetic filed. The temperature effect on the normal force is studied and under high magnetic field the normal force would increase slightly with the increasing of temperature.
  1. Andablo-Reyes E, de Vicente J, Hidalgo-Alvarez R, J. Rheol., 55(5), 981 (2011)
  2. Andablo-Reyes E, Hidalgo-Alvarez R, de Vicente J, Soft Matter., 7, 880 (2011)
  3. Carlson JD, Catanzarite DM, Clair SKA, Int. J. Mod. Phys. B., 10, 2857 (1996)
  4. Chan YT, Liu KP, Wong PL, Bullough WA, Journal of Physics: Conference Series., 149, 012041 (2009)
  5. Chan YT, Wong P, Liu KP, Bullough WA, J. Intell. Mat. Syst. Struct., 22, 551 (2011)
  6. Chen J, Liao WH, Proc. of the 2008 IEEE Int. Conf. on Robotics and Biomimetics., 512 (2008)
  7. Choi HJ, Jhon MS, Soft Matter., 5, 1562 (2009)
  8. Claracq J, Sarrazin J, Montfort JP, Rheol. Acta, 43(1), 38 (2004)
  9. de Vicente J, Gonzalez-Caballero F, Bossis G, Volkova O, J. Rheol., 46(5), 1295 (2002)
  10. Fang FF, Choi HJ, Jhon MS, Colloids Surf. A., 351, 46 (2009)
  11. Fermigier M, Gast AP, J. Colloid Interface Sci., 154, 522 (1992)
  12. Furst EM, Gast AP, Phys. Rev. E., 61, 6732 (2000)
  13. Ginder JM, Davis LC, Appl. Phys.Lett., 65, 3410 (1994)
  14. Grasselli Y, Bossis G, Lemaire E, J. Phys. II France., 4, 253 (1994)
  15. Hiemenz GJ, Hu W, Wereley NM, J. Aircraft., 45, 945 (2008)
  16. Jiang JL, Tian Y, Ren DX, Meng YG, Smart. Mater. Struct., 20, 085012 (2011)
  17. Jiang WQ, Zhang YL, Xuan SH, Guo CY, Gong XL, J. Magn. Magn. Mater., 323, 3246 (2011)
  18. Jolly MR, Carlson JD, Munoz BC, Smart. Mater.Struct., 5, 607 (1996)
  19. Klingenberg DJ, Zukoski CF, Langmuir., 6, 15 (1990)
  20. Kordonski WI, Golini D, J.Intell. Mat. Syst. Struct., 10, 683 (2000)
  21. Laun HM, Gabriel C, Schmidt G, J. Non-Newton. Fluid Mech., 148(1-3), 47 (2008)
  22. Laun HM, Schmidt G, Gabriel C, Kieburg C, Rheol. Acta, 47(9), 1049 (2008)
  23. Lemaire E, Bossis G, J. Phys D: Appl. Phys., 24, 1473 (1991)
  24. Lemaire E, Grasselli Y, Bossis G, J. Phys. II France., 2, 359 (1992)
  25. Li WH, Zhang XZ, Korea-Aust. Rheol. J., 20(2), 45 (2008)
  26. Li WH, Liu B, Kosasih PB, Zhang XZ, Sensor Actuat. A., 137, 308 (2007)
  27. Liu YD, Fang FF, Choi HJ, Langmuir, 26(15), 12849 (2010)
  28. Lopez-Lopez MT, Kuzhir P, Duran JDG, Bossis G, J. Rheol., 54(5), 1119 (2010)
  29. Orellana CS, He J, Jaeger HM, Soft Matter., 7, 8023 (2011)
  30. Rabinow J, AIEE Trans., 67, 1308 (1948)
  31. Sahin H, Wang X, Gordaninejad F, J. Intell. Mater.Sys. Struct., 20, 2215 (2009)
  32. See H, Tanner R, Rheol. Acta, 42(1-2), 166 (2003)
  33. Shkel YM, Klingenberg DJ, A thermodynamic approach to field-induced stresses in electro- and magnetoactive composites, In: Tao R (ed) Proc. of the 7th Int. Conf. on Electro-rheological Fluids, Magnetorheological Suspensions, Hawaii World Scientific, Singapore, 252 (2000)
  34. Shkel YM, Klingenberg DJ, J. Rheol., 45(2), 351 (2001)
  35. Spencer BF, Nagarajaiah S, J. Struct. Eng.-ASCE., 129, 845 (2003)
  36. Tao R, Woestman JT, Jaggi NK, Appl. Phys. Lett., 55, 1844 (1989)
  37. Wang X, Gordaninejad F, Smart. Mater. Struct., 18, 095045 (2009)
  38. Weiss KD, Duclos TG, Int. J. Mod.Phys. B., 8, 3015 (1994)
  39. Yang YB, Li L, Chen G, Rheol. Acta, 48(4), 457 (2009)
  40. Zhang Z, Zhang JQ, Jia JF, J. Cent.South Univ. T., 15(s1), 252 (2008)
  41. Zhou L, Wen WJ, Sheng P, Phys. Rev. Lett., 81, 1509 (1998)
  42. Zubieta M, Eceolaza S, Elejabarrieta MJ, Bou-Ali MM, Smart. Mater. Struct., 18, 1 (2009)