화학공학소재연구정보센터
Journal of Canadian Petroleum Technology, Vol.46, No.3, 39-45, 2007
Characterizing and modelling of fractured reservoirs with object-oriented global optimization
Modelling of naturally fractured reservoirs is the first step to develop best scenarios for hydraulic fracture treatment, the design of an optimum production method and to evaluate reservoir potential. This paper reviews the state-of-the-art in current methods; hence, presents an integrated modelling methodology, utilizing object-based modelling, stochastic simulation and global optimization. Firstly, as an object-based model, each fracture is presented and treated as a discrete object. A stochastic simulation is carried out to generate an initial fracture network. An objective function is then formulated as the difference in statistics between the initial network and the target. Semi-variogram and other spatial statistical properties (cross variogram, multi-histogram mean and variogram distance) of fracture parameters are included so that the objective function is able to statistically describe representative field data. Subsequently, we use a global optimization algorithm to optimize the objective function. A case study is performed on an actual outcrop fault map to illustrate the proposed methodology's capacity. The results map the outcrop faults very closely.