Journal of Adhesion Science and Technology, Vol.22, No.2, 147-168, 2008
UV-ozone surface treatment of SBS rubbers containing fillers: Influence of the filler nature on the extent of surface modification and adhesion
SBS rubbers containing different loadings of calcium carbonate and/or silica fillers were surface treated with UV-ozone to improve their adhesion to polyurethane adhesive. The surface modifications produced on the treated filled SBS rubbers have been analyzed by contact angle measurements, ATR-IR spectroscopy, XPS and SEM. The adhesion properties have been evaluated by T-peel strength tests on treated filled SBS rubber/polyurethane adhesive/leather joints. The UV-ozone treatment improved the wettability of all rubber surfaces, and chemical (oxidation) and morphological modifications (roughness, ablation, surface melting) were produced. The increase in the time of UV-ozone treatment to 30 min led to surface cleaning (removal of silicon-based moieties) due to ablation and/or melting of rubber layers and also incorporation of more oxidized moieties was produced. Although chemical modifications were produced earlier in an unfilled rubber for short time of treatment with UV-ozone, they were more noticeable in filled rubbers for extended length of treatment, mainly for S6S and S6T rubbers containing silica filler. The oxidation process seemed to be inhibited for S6C and S6T rubbers (containing calcium carbonate filler). On the other hand, the S6S rubber containing silica filler and the lowest filler loading showed the higher extent of modification as a consequence of the UV-ozone treatment. The UV-ozone increased the joint strength in all joints, more noticeably in the rubbers containing silica filler, in agreement with the greater extents of chemical and morphological modifications produced by the treatment in these rubbers. Finally, the nature and content of fillers determined the extent of surface modification and adhesion of SBS rubber treated with UV-ozone. (c) Koninkfijke Brill NV, Leiden, 2008.
Keywords:SBS rubber;filler;UV-ozone;contact angle measurements;ATR-IR spectroscopy;XPS;SEM;peel strength