화학공학소재연구정보센터
Journal of Adhesion Science and Technology, Vol.19, No.12, 1053-1080, 2005
Diagnosis criterion for damage monitoring of adhesive joints by a piezoelectric method
Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than mechanical joints, require no holes, add very little weight to the structure and have superior fatigue resistance. Since the reliability of an adhesive joint is dependent on many parameters, such as the shape of joint, type of applied load and environment, an accurate prediction of the fatigue life of adhesive joints is seldom possible, which necessitates an in situ damage monitoring of the joints during their operation. Recently, a piezoelectric method using the piezoelectric characteristics of epoxy adhesives has been successfully developed for adhesive joints because it can continuously monitor the damage of adhesively bonded structures without producing any defects induced by inserting a sensor. Therefore, in this study, the damage of adhesive joints was monitored by the piezoelectric method during torsional fatigue tests in order to develop the diagnosis criterion for damage monitoring of adhesive joints by the piezoelectric method. The diagnosis criterion was developed by analyzing damage monitoring signals under various test conditions and adopting normalized parameters.