Journal of Adhesion Science and Technology, Vol.16, No.8, 1027-1040, 2002
Adhesion improvement of electroless copper to a polyimide film substrate by combining surface microroughening and imide ring cleavage
In order to enhance the adhesion strength of copper metal film to a polyimide (PI) film substrate, a method combining surface microroughness formation and imide ring cleavage was investigated. The results showed that imide rings were cleaved with a KOH treatment while carboxyl and amide groups were formed on the surface of the PI film. The surface micro-roughness did not change with the KOH treatment, and the adhesion strength of the copper metal film to the PI film was slightly improved to 30 g/mm, which could be attributed to the interaction of both carboxyl and amide groups with the copper atoms. When the PI films were successively treated with an alkaline permanganate and a KOH solution, many recesses were formed on the surface in an alkaline permanganate solution, and the size and depth of the recesses increased with alkaline permanganate treatment time. The results of the AFM measurements showed that the average roughness (R) increased from 3.54 to 10.23 nm after combined treatment with alkaline permanganate and KOH solutions. The adhesion strength of the copper metal film to the PI film reached 150 g/mm. which was five times greater than that achieved with the KOH treatment only.
Keywords:adhesion strength;polyimide film;electroless copper plating;surface microroughness;imide ring cleavage;copper carboxylate