화학공학소재연구정보센터
Journal of Adhesion Science and Technology, Vol.15, No.1, 119-135, 2001
Photoelastic thermal stress measurements in scarf adhesive joints under uniform temperature changes
This study deals with the investigation of thermal stresses and delamination growth in scarf joints under a uniform temperature change by photoelastic measurements and a two-dimensional finite element analysis. The adherends were fabricated from aluminum plates, and an adhesive layer was modeled and fabricated from an epoxide resin plate. The adherends and the epoxide resin plate were bonded using a heat-setting and one-component-type adhesive. The adhesive was cured at 85 degreesC and cooled down to room temperature. The thermal stress was then generated in the scarf joint under a temperature change and measured by photoelasticity. After the scarf joints were cooled in a stepwise manner, the delamination growth, which initiates from the edge of the interface, was measured. It was found that the delamination initiates from the edge of the interface with the acute angle side and it never initiates from the edge with the obtuse angle side. When the scarf angle is 90 degrees, i.e. in adhesive butt joints, the resistance against the delamination is minimal. The thermal stresses in the scarf joints with a thin adhesive layer were also analyzed. It was found that the thermal strength increases as the adhesive thickness decreases. The stress singularity near the edge of the interface was calculated from the stress distributions in the joints with different scarf angles. As a result, it was found that the stress singularity in the scarf joints under thermal loads is quite different from that under static tensile loads.