Journal of Adhesion Science and Technology, Vol.14, No.6, 791-803, 2000
Adhesion of nylon-6 to triazine trithiol-treated metals during injection molding
An examination was made of the adhesion of nylon-6 resin to treated metals such as phosphor bronze, brass plates, and electronickel platings during injection molding. No adhesion to any of these metals was noted to occur under ordinary injection molding conditions and an aqueous solution of 1,3,5-triazine-2,4,6-trithiol mononatrium (TTN) was thus used to induce adhesion. Following treatment with aqueous TTN solution under optimal conditions, nylon-6 adhered tightly to all the above metals under ordinary injection molding conditions. The TTN treatment led to the formation of surface films containing metal salts of 1,3,5-triazine-2,4,6-trithiol (TT). Conditions were made optimal with regard to time, temperature and TTN concentration. Adherent films were generally formed when bronze and brass were treated for short periods, at low temperature, and at low TTN concentration, although this was not the case with nickel plating. There was no adhesion to nickel plating even for a prolonged treatment time, high temperature, and high TTN concentration. Adherent and non-adherent films did not differ in the chemical structures of the metal salts of TT but they did differ in morphology. Good adhesion was noted in the case of TT-metal salts present at low density on the metal surface. Some films readily reacted with amino compounds under conditions similar to those generally used for the injection molding of nylon. The adhesion was concluded to be due to the formation of interfacial bonds during injection molding.
Keywords:1,3,5-triazine-2,4,6-trithiol mononatrium;surface-treated metal;surface film formation;injection molding;amino compounds;interfacial bonds