화학공학소재연구정보센터
International Polymer Processing, Vol.20, No.3, 305-311, 2005
External calibration in PA12 tube extrusion - Part II: Relations between molecular orientation, tensile properties and polymer drawing during calibration
Elongation at break is one of the major end-use properties of polyamide 12 extruded tubes. It is strongly affected by the tube microstructure and the molecular orientation resulting from extrusion conditions. Molecular orientation was characterized by X-ray diffraction and birefringence evaluation in light microscopy. Measurements were carried out on (r z) sections obtained by polishing and microtoming. On the other hand, polymer drawing was measured on line by tracer techniques. Calibration stage was determined as the key step of the process that generates orientation in tubes: as the tube is drawn through a cylindrical calibrator under vacuum and cooled from its outside surface, calibration leads to a highly oriented zone in the twenty external microns. Calibration conditions and elongation at break have been connected through orientation level in this region. Molecular orientation was found to strongly depend on the draw ratio in the calibration tank. Finally, birefringence of the tube external layers and elongation at break were successfully correlated. Elongation at break can be enhanced by reducing orientation resulting from calibration conditions.