- Previous Article
- Next Article
- Table of Contents
International Journal of Coal Geology, Vol.79, No.4, 115-130, 2009
Mining-induced fault reactivation associated with the main conveyor belt roadway and safety of the Barapukuria Coal Mine in Bangladesh: Constraints from BEM simulations
Fault reactivation during underground mining is a critical problem in coal mines worldwide. This paper investigates the mining-induced reactivation of faults associated with the main conveyor belt roadway (CBR) of the Barapukuria Coal Mine in Bangladesh. The stress characteristics and deformation around the faults were investigated by boundary element method (BEM) numerical modeling. The model consists of a simple geometry with two faults (Fb and Fb1) near the CBR and the surrounding rock strata. A Mohr-Coulomb failure criterion with bulk rock properties is applied to analyze the stability and safety around the fault zones, as well as for the entire mining operation. The simulation results illustrate that the mining-induced redistribution of stresses causes significant deformation within and around the two faults. The horizontal and vertical stresses influence the faults, and higher stresses are concentrated near the ends of the two faults. Higher vertical tensional stress is prominent at the upper end of fault Fb. High deviatoric stress values that concentrated at the ends of faults Fb and Fb1 indicate the tendency towards block failure around the fault zones. The deviatoric stress patterns imply that the reinforcement strength to support the roof of the roadway should be greater than 55 MPa along the fault core zone, and should be more than 20 MPa adjacent to the damage zone of the fault. Failure trajectories that extend towards the roof and left side of fault Fb indicate that mining-induced reactivation of faults is not sufficient to generate water inflow into the mine. However, if movement of strata occurs along the fault planes due to regional earthquakes, and if the faults intersect the overlying Lower Dupi Tila aquiclude, then liquefaction could occur along the fault zones and enhance water inflow into the mine. The study also reveals that the hydraulic gradient and the general direction of groundwater flow are almost at right angles with the trends of faults Fb and Fb1, which could act as barriers to groundwater flow into the mines. (C) 2009 Elsevier B.V. All rights reserved.
Keywords:Fault reactivation;Failure trajectories;Conveyor belt roadway;Mining safety;Barapukuria coal mine