화학공학소재연구정보센터
Journal of Adhesion Science and Technology, Vol.13, No.11, 1343-1360, 1999
Effects of adhesive fillers on the strength of tubular single lap adhesive joints
When an adhesively bonded joint is exposed to a high environmental temperature, the tensile load capability of the adhesively bonded joint decreases because the elastic modulus and failure strength of the adhesive decrease. In this paper, the elastic modulus and failure strength of the adhesive as well as the tensile load capability of the tubular single lap adhesively bonded joint were experimentally and theoretically investigated with respect to the volume fraction of filler and the environmental temperature. Two types of fillers - Al2O3 (alumina) and chopped fiber E glass - were used. From the experiment, it was found that the elastic modulus and failure strength of the adhesive increased in accordance with the increase of volume fraction of the filler and decreased with the environmental temperature rise. It was also found that the tensile load capability of the tubular single lap adhesively bonded joint decreased as the environmental temperature increased; however, it had no correlation with the volume fraction of filler because of the effect of the fabrication thermal residual stresses generated by the CTE difference between the adherend and adhesive.