317 - 326 |
Experimental study of opposed flow flame spread over wood fiber thermoplastic composite materials Oladipo AB, Wichman IS |
327 - 339 |
Effects of a recess on cryogenic flame stabilization Kendrick D, Herding G, Scouflaire P, Rolon C, Candel S |
340 - 358 |
Shock-tube and modeling study of methane pyrolysis and oxidation Hidaka Y, Sato K, Henmi Y, Tanaka H, Inami K |
359 - 369 |
A lean flammability limit of polymethylmethacrylate particle-cloud in microgravity Hanai H, Ueki M, Maruta K, Kobayashi H, Hasegawa S, Niioka T |
370 - 380 |
Ignition of fuel mixtures by standing acoustic waves Vainshtein P, Gutfinger C, Pneuli D |
381 - 398 |
Kinetic modeling of a rich, atmospheric pressure, premixed n-heptane/O-2/N-2 flame El Bakali A, Delfau JL, Vovelle C |
399 - 414 |
NOx formation in two-stage methane-air flames Li SC, Williams FA |
415 - 430 |
A flow reactor study of neopentane oxidation at 8 atmospheres: Experiments and modeling Wang SQ, Miller DL, Cernansky NP, Curran HJ, Pitz WJ, Westbrook CK |
431 - 444 |
Pressure change and transport process on flames formed in a stretched, rotating flow Yamamoto K |
445 - 458 |
Predicting heats of formation of energetic materials using quantum mechanical calculations Rice BM, Pai SV, Hare J |
459 - 468 |
Mechanisms for the formation of exhaust hydrocarbons in a single cylinder spark-ignition engine, fueled with deuterium-labeled ortho-, meta- and para-xylene Gregory D, Jackson RA, Bennett PJ |