1 - 19 |
Challenges in modeling of bulk crystal growth Muller G, Friedrich J |
20 - 27 |
Advances in the simulation of heat transfer and prediction of the melt-crystal interface shape in silicon CZ growth Lukanin DP, Kalaev VV, Makarov YN, Wetzel T, Virbulis J, von Ammon W |
28 - 33 |
Prediction of solid-liquid interface shape during CZ Si crystal growth using experimental and global simulation Shiraishi Y, Maeda S, Nakamura K |
34 - 39 |
Prediction of the growth interface shape in industrial 300 mm CZ Si crystal growth Wetzel T, Virbulis J, Muiznieks A, von Ammon W, Tomzig E, Raming G, Weber M |
40 - 47 |
Numerical 2D modelling of turbulent melt flow in CZ system with dynamic magnetic fields Krauze A, Muiznieks A, Muhlbauer A, Wetzel T, Gorbunov L, Pedchenko A, Virbulis J |
48 - 53 |
Effects of temperature coefficient of surface tension on oxygen transport in a small silicon Cz furnace Li YR, Imaishi N, Akiyama Y, Peng L, Wu SY, Tsukada T |
54 - 59 |
Numerical study of transient behaviour of molten zone during industrial FZ process for large silicon crystal growth Rudevics A, Muiznieks A, Ratnieks G, Muhlbauer A, Wetzel T |
60 - 66 |
Axisymmetric and 3D calculations of melt flow during VCz growth Bansch E, Davis D, Langmach H, Miller W, Rehse U, Reinhardt G, Uhle M |
67 - 73 |
3D computations of melt convection and crystallization front geometry during VCz GaAs growth Smirnova OV, Kalaev VV, Makarov YN, Frank-Rotsch C, Neubert M, Rudolph P |
74 - 80 |
Simulation of heat transfer and melt flow in Czochralski growth of Si1-xGex crystals Smirnova OV, Kalaev VV, Makarov YN, Abrosimov NV, Riemann H |
81 - 87 |
Three-dimensional unsteady convection in LiCaAlF6-Czochralski growth Zeng Z, Chen JQ, Mizuseki H, Fukada T, Kawazoe Y |
88 - 95 |
Thermocapillary flow in a shallow molten silicon pool with Czochralski configuration Li YR, Imaishi N, Peng L, Wu SY, Hibiya T |
96 - 102 |
Effect of internal radiation on the crystal-melt interface shape in Czochralski oxide growth Budenkova ON, Mamedov VM, Vasilieva MG, Yuferev VS, Makarov YN |
XI - XII |
IWMCG-4 - Proceedings of the Fourth International Workshop on Modeling in Crystal Growth - 4-7 November 2003 - Kyushu, Japan - Preface Lan CW, Imaishi N, Kakimoto K |
103 - 108 |
Simulation of global heat transfer in the Czochralski process for BGO sillenite crystals Budenkova ON, Vasiliev MG, Yuferev VS, Bystrova EN, Kalaev VV, Bermudez V, Dieguez E, Makarov YN |
109 - 116 |
Numerical analysis of continuous charge of lithium niobate in a double-crucible Czochralski system using the accelerated crucible rotation technique Kitashima T, Liu LJ, Kitamura K, Kakimoto K |
117 - 125 |
Simplified Monte Carlo simulations of point defects during industrial silicon crystal growth Muiznieks A, Madzulis I, Dadzis K, Lacis K, Wetzel T |
126 - 131 |
Defect formation in CZ silicon growth Voigt A, Weichmann C |
132 - 139 |
Simulation of boron effects on OISF-ring dynamics for Czochralski silicon growth: a comparative study Huang LI, Lee PC, Hsieh CK, Shu WC, Lan CW |
140 - 144 |
A three-dimensional numerical simulation study of the Marangoni convection occurring in the crystal growth of SixGe1-x by the float-zone technique in zero gravity Minakuchi H, Okano Y, Dost S |
145 - 151 |
Numerical simulation of Marangoni flow in partially confined half-zone liquid bridge of low-Prandtl-number fluids Shiratori S, Yasuhiro S, Hibiya T |
152 - 159 |
Oscillatory Marangoni flow in half-zone liquid bridge of molten tin Yasuhiro S, Li K, Imaishi N, Akiyama Y, Natsui H, Matsumoto S, Yoda S |
160 - 166 |
Linear-stability analysis of thermocapillary convection in liquid bridges with highly deformed free surface Ermakov MK, Ermakova MS |
167 - 174 |
A multi-block method and multi-grid technique for large diameter EFG silicon tube growth Sun DW, Wang CL, Zhang H, Mackintosh B, Yates D, Kalejs J |
175 - 181 |
Optimization of the Bridgman crystal growth process Margulies M, Witomski P, Duffar T |
182 - 189 |
Development of model-based control for Bridgman crystal growth Sonda P, Yeckel A, Daoutidis P, Derby JJ |
190 - 199 |
Modeling of thermosolutal convection during Bridgman solidification of semiconductor alloys in relation with experiments Stelian C, Duffar T |
200 - 206 |
Three-dimensional analysis of flow and segregation in vertical Bridgman crystal growth under a transversal magnetic field with ampoule rotation Lan CW, Yeh BC |
207 - 215 |
Solute segregation in directional solidification of GaInSb concentrated alloys under alternating magnetic fields Stelian C, Delannoy Y, Fautrelle Y, Duffar T |
216 - 223 |
Dynamics of melt-crystal interface and thermal stresses in rotational Bridgman crystal growth process Ma RH, Zhang H, Larson DJ, Mandal KC |
224 - 228 |
Comparative numerical study of the effects of rotating and travelling magnetic fields on the interface shape and thermal stress in the VGF growth of InP crystals Schwesig P, Hainke M, Friedrich J, Mueller G |
229 - 238 |
Use of genetic algorithms for the development and optimization of crystal growth processes Fuhner T, Jung T |
239 - 245 |
Influence of the crucible geometry on the shape of the melt-crystal interface during growth of sapphire crystal using a heat exchanger method Chen JC, Lu CW |
246 - 256 |
Experimental and numerical analysis of coupled interfacial kinetics and heat transport during the axial heat flux close to the phase interface growth of BGO single crystals Bykova SV, Golyshev VD, Gonik MA, Tsvetovsky VB, Deshko VI, Karvatskii AY, Lenkin AV, Brandon S, Weinstein O, Virozub A, Derby JJ, Yeckel A, Sonda P |
257 - 263 |
Transient simulation of facet growth during directional solidification Ma Y, Z'heng LL, Larson DJ |
264 - 270 |
SPN-approximations of internal radiation in crystal growth of optical materials Backofen R, Bilz T, Ribalta A, Voigt A |
271 - 277 |
Effects of baffle design on fluid flow and heat transfer in ammonothermal growth of nitrides Chen QS, Pendurti S, Prasad V |
278 - 282 |
Various phase-field approximations for Epitaxial Growth Ratz A, Voigt A |
283 - 288 |
Growth kinetics and melt convection Miller W, Rasin I, Pimentel F |
289 - 296 |
Theory of cellular solidification and homogeneous nucleation from molar flux balance at a diffuse interface layer Kotake S |
297 - 302 |
A clear observation of crystal growth of ice from water in a molecular dynamics simulation with a six-site potential model of H2O Nada H, van der Eerden JP, Furukawa Y |
303 - 312 |
Modeling and simulation of AlN bulk sublimation growth systems Wu B, Ma RH, Zhang H, Prasad V |
313 - 319 |
Modeling of facet formation in SiC bulk crystal growth Matukov ID, Kalinin DS, Bogdanov MV, Karpov SY, Ofengeim DK, Ramm MS, Barash JS, Mokhov EN, Roenkov AD, Vodakov YA, Ramm MG, Helava H, Makarov YN |
320 - 326 |
Effects of induction heating on temperature distribution and growth rate in large-size SiC growth system Chen QS, Gao P, Hu WR |
327 - 332 |
Formation mechanism of local thickness profile of silicon epitaxial film Habuka H, Fukaya S, Sawada A, Takeuchi T, Aihara M |
333 - 339 |
Modeling of SiC-matrix composite formation by isothermal chemical vapor infiltration Kulik VI, Kulik AV, Ramm MS, Makarov YN |
340 - 346 |
Computational analysis of wafer temperature non-uniformity in MOVPE system Shimizu E, Sugawara S, Nakata H |
347 - 353 |
Effects of hydrogen on GaN metalorganic vapor-phase epitaxy using tertiarybutylhydrazine as nitrogen source Hsu YJ, Hong LS, Jiang JC, Chang JC |
354 - 362 |
Parametric studies of III-nitride MOVPE in commercial vertical high-speed rotating disk reactors Lobanova A, Mazaev K, Yakovlev E, Talalaev R, Galyukov A, Makarov Y, Gotthold D, Albert B, Kadinski L, Peres B |
363 - 370 |
Accelerated decomposition of gas phase metal organic molecules determined by radical reactions Cavallotti C, Moscatelli D, Masi M, Carra S |
371 - 380 |
A combined three-dimensional kinetic Monte Carlo and quantum chemistry study of the CVD of Si on Si(100) surfaces Cavallotti C, Barbato A, Veneroni A |
381 - 387 |
Finite element method for epitaxial island growth Hausser F, Voigt A |
388 - 395 |
Education and tutorial in modeling of elementary flows, heat and mass transfer during crystal growth in ground-based and microgravity environment Ermakov MK, Nikitin SA, Polezhaev VI, Yaremchuk VP |
396 - 403 |
Three-dimensional modeling of melt flow and interface shape in the industrial liquid-encapsulated Czochralski growth of GaAs Vizman D, Eichler S, Friedrich J, Muller G |
404 - 410 |
Time-dependent magnetic field influence on GaAs crystal growth by vertical Bridgman method Lyubimova TP, Croell A, Dold P, Khlybov OA, Fayzrakhmanova IS |