1 - 9 |
Numerical modeling at the IKZ: an overview and outlook Miller W, Schroder W |
10 - 21 |
Modeling contributions in commercialization of silicon ribbon growth from the melt Kalejs JP |
22 - 29 |
Modeling analysis of unsteady three-dimensional turbulent melt flow during Czochralski growth of Si crystals Evstratov IY, Kalaev VV, Zhmakin AI, Makarov YN, Abramov AG, Ivanov NG, Smirnov EM, Dornberger E, Virbulis J, Tomzig E, von Ammon W |
30 - 39 |
Direct simulations and stability analysis of the gravity driven convection in a Czochralski model Nikitin N, Polezhaev V |
40 - 47 |
Convective interaction and instabilities in GaAs Czochralski model Polezhaev VI, Bessonov OA, Nikitin NV, Nikitin SA |
48 - 56 |
Numerical 3D study of FZ growth: dependence on growth parameters and melt instability Ratnieks G, Muiznieks A, Muhlbauer A, Raming G |
57 - 62 |
Three-dimensional flow transitions under a rotating magnetic field Ben Hadid H, Vaux S, Kaddeche S |
63 - 72 |
Effect of axial magnetic field on three-dimensional instability of natural convection in a vertical Bridgman growth configuration Gelfgat AY, Bar-Yoseph PZ, Solan A |
73 - 80 |
Comparison of the predictions from 3D numerical simulation with temperature distributions measured in Si Czochralski melts under the influence of different magnetic fields Vizman D, Friedrich J, Muller G |
81 - 91 |
Numerical model of turbulent CZ melt flow in the presence of AC and CUSP magnetic fields and its verification in a laboratory facility Wetzel T, Muiznieks A, Muhlbauer A, Gelfgat Y, Gorbunov L, Virbulis J, Tomzig E, von Ammon W |
92 - 99 |
Numerical investigation of silicon melt flow in large diameter CZ-crystal growth under the influence of steady and dynamic magnetic fields Virbulis J, Wetzel T, Muiznieks A, Hanna B, Dornberger E, Tomzig E, Muhlbauer A, von Ammon W |
100 - 107 |
Oxygen distribution in silicon melt under inhomogeneous transverse-magnetic fields Kakimoto K |
108 - 117 |
Numerical investigation of the influence of EM-fields on fluid motion and resistivity distribution during floating-zone growth of large silicon single crystals Raming G, Muiznieks A, Muhlbauer A |
118 - 124 |
Combining a rotating magnetic field and crystal rotation in the floating-zone process with a needle-eye induction coil Ma N, Walker JS, Ludge A, Riemann H |
125 - 134 |
Magnetic field design for floating zone crystal growth Li K, Hu WR |
135 - 142 |
Comparison of measurements and numerical simulations of melt convection in Czochralski crystal growth of silicon Enger S, Grabner O, Muller G, Breuer M, Durst F |
143 - 147 |
A numerical investigation of the effects of iso- and counter-rotation on the shape of the VCz growth interface Rehse U, Miller W, Frank C, Rudolph P, Neubert M |
148 - 154 |
Effect of crystal rotation on the three-dimensional mixed convection in the oxide melt for Czochralski growth Basu B, Enger S, Breuer M, Durst F |
155 - 163 |
Numerical modeling of contact-free control over crystal growth heat-mass transfer processes through heat field rotation Kokh AE, Popov VN, Mokrushnikov PW |
164 - 171 |
Numerical simulation of oscillatory Marangoni flow in half-zone liquid bridge of low Prandtl number fluid Imaishi N, Yasuhiro S, Akiyama Y, Yoda S |
172 - 180 |
Three-dimensional simulation of Marangoni flow and interfaces in floating-zone silicon crystal growth Lan CW, Chian JH |
181 - 187 |
Influence of the growth rate on the segregation in manganese-doped gallium antimonide grown by the vertical Bridgman technique Plaza JL, Dieguez E |
188 - 194 |
Solidification in Bridgman configuration with solutally induced flow Haddad FZ, Garandet JP, Henry D, BenHadid H |
195 - 201 |
A modified Chang-Brown model for the determination of the dopant distribution in a Bridgman-Stockbarger semiconductor crystal growth system Balint AM, Mihailovici MM, Baltean DG, Balint S |
202 - 209 |
On stable algorithms and accurate solutions for convection-dominated mass transfer in crystal growth modeling Vartak B, Derby JJ |
210 - 216 |
Optimal control of crystal growth processes Metzger M |
217 - 223 |
Modelling requirements for development of an advanced Czochralski control system Gevelber M, Wilson D, Duanmu N |
224 - 231 |
Growth of large diameter silicon tube by EFG technique: modeling and experiment Roy A, Zhang H, Prasad V, Mackintosh B, Ouellette M, Kalejs JP |
232 - 238 |
On low temperature kinetic effects in metal-organic vapor phase epitaxy of III-V compounds Talalaev RA, Yakovlev EV, Karpov SY, Makarov YN |
239 - 246 |
Heat transfer and kinetics of bulk growth of silicon carbide Chen QS, Zhang H, Prasad V |
247 - 257 |
Reduced order model for the CVD of epitaxial silicon from silane and chlorosilanes Valente G, Cavallotti C, Masi M, Carra S |
258 - 262 |
Modeling of nucleation kinetics of ternary nitrides from vapour phase Varadarajan E, Dhanasekaran R, Ramasamy P |
263 - 269 |
The lattice Boltzmann method: a new tool for numerical simulation of the interaction of growth kinetics and melt flow Miller W |
270 - 276 |
Simulations of crystallization and melting of the FCC (100) interface: the crucial role of lattice imperfections Tepper HL, Briels WJ |
277 - 284 |
The effect of solvent on crystal morphology ter Horst JH, Geertman RM, van Rosmalen GM |
285 - 290 |
Molecular dynamics simulation of energetic ion bombardment onto a-Si3N4 surfaces Kim DH, Kim DH, Lee KS |
291 - 299 |
Modeling of transient point defect dynamics in Czochralski silicon crystals Dornberger E, von Ammon W, Virbulis J, Hanna B, Sinno T |
300 - 304 |
Numerical simulation of point defect transport in floating-zone silicon single crystal growth Larsen TL, Jensen L, Ludge A, Riemann H, Lemke H |
305 - 313 |
Stress-induced dislocation generation in large FZ- and CZ-silicon single crystals - numerical model and qualitative considerations Muiznieks A, Raming G, Muhlbauer A, Virbulis J, Hanna B, Von Ammon W |
314 - 317 |
Numerical modeling of the pulse heat-transfer and impurities diffusion under mechanical stresses in semiconductor crystals Monastyrskii L, Olenych I, Parandii P |
318 - 327 |
Diffusional interactions among crystallites Glicksman ME, Wang KG, Marsh SP |
328 - 335 |
Modeling the coupled effects of interfacial and bulk phenomena during solution crystal growth Kwon YI, Derby JJ |
VIII - IX |
Modeling in crystal growth - Proceedings of the Third International Workshop on Modeling in Crystal Growth - Hauppauge, New York, USA, 18-20 October 2000 - Preface Prasad V, Yeckel A, Derby JJ |