1 - 7 |
Quantum devices, MBE technology for the 21st century Cho AY, Sivco DL, Ng HM, Gmachl C, Tredicucci A, Hutchinson AL, Chu SNG, Capasso F |
8 - 12 |
MBE of quantum wires and quantum dots Notzel R, Ploog KH |
13 - 20 |
Growth and device applications of III-nitrides by MBE Moustakas TD, Iliopoulos E, Sampath AV, Ng HM, Doppalapudi D, Misra M, Korakakis D, Singh R |
21 - 26 |
Structure of MBE grown semiconductor-atomic superlattices Tsu R, Lofgren JC |
27 - 35 |
Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors Bhattacharya P, Krishna S, Phillips J, McCann PJ, Namjou K |
36 - 40 |
A growth method to obtain flat and relaxed In0.2Ga0.8As on GaAs (001) developed through in situ monitoring of surface topography and stress evolution Gonzalez MU, Gonzalez Y, Gonzalez L, Calleja M, Silveira JP, Garcia JM, Briones F |
41 - 45 |
Two-step-heating sequence in arsenic-free high-temperature surface cleaning method for GaAs-AlGaAs MBE Iizuka K, Sakamaki Y, Suzuki T, Okamoto H |
46 - 50 |
Step bunching in InGaAs/GaAs quantum wells grown by molecular beam epitaxy on GaAs(001) vicinal surfaces Martini S, Quivy AA, Ugarte D, Lange C, Richter W, Tokranov VE |
51 - 55 |
Diffusion and incorporation: shape evolution during overgrowth on structured substrates Braun W, Kaganer VM, Trampert A, Schonherr HP, Gong Q, Notzel R, Daweritz L, Ploog KH |
56 - 61 |
Optimising the growth of pyramidal GaAs microstructures on pre-patterned GaAs(001) substrates Williams RS, Ashwin MJ, Neave JH, Jones TS |
62 - 66 |
Transformation of GaAs (001)-(111)B facet structure by surface diffusion during molecular beam epitaxy on patterned substrates Koshiba S, Nakamura Y, Noda T, Watanabe S, Akiyama H, Sakaki H |
67 - 71 |
Arsenic pressure dependence of hillock morphology on GaAs (n11)A substrates grown using MBE Ohachi T, Inada M, Asai K, Feng JM |
72 - 76 |
Lattice-matched InxGa1-xAs/InxAl1-xAs quantum wells (x=0.18 and 0.19) grown on (411)A- and (100)-oriented InGaAs ternary substrates by molecular beam epitaxy Shimomura S, Kitano Y, Kuge H, Kitada T, Nakajima K, Hiyamizu S |
77 - 82 |
The fractional-dimensional space approach to MBE-grown quantum-sized semiconductor low-dimensional systems Reyes-Gomez E, Matos-Abiague A, de Dios-Leyva M, Oliveira LE |
83 - 87 |
First-principles study of Si incorporation processes on a GaAs(111)A surface Taguchi A, Shiraishi K, Ito T |
88 - 92 |
Characteristics of Si and Be delta-codoped GaAs grown by MBE Yonekubo S, Ichiryu D, Horikoshi Y |
93 - 97 |
MBE/MEE growth and characterization of C-60-doped GaAs Zhan HH, Horikoshi Y |
98 - 103 |
Microstructural differences of the two possible orientations of GaAs on vicinal (001) Si substrates Calamiotou M, Chrysanthakopoulos N, Lioutas C, Tsagaraki K, Georgakilas A |
IX - IX |
Proceedings of the Eleventh International Conference on Molecular Beam Epitaxy Beijing, China, 11-15 september 2000 - Preface Kong M, Tu CW |
104 - 107 |
Growth of device-quality GaAs layer directly on (001) Ge substrates by both solid-source and gas-source MBE Li W, Laaksonen S, Haapamaa J, Pessa M |
108 - 111 |
In-situ PR study of the confined states in AlGaAs/GaAs surface QW Chen PP, Miao ZL, Lu W |
112 - 116 |
Photoluminescence of nearly stoichiometric LT-GaAs and LT-GaAs/AlAs MQW Obata T, Fukushima S, Araya T, Otsuka N |
117 - 122 |
Properties of deep levels and photorefractive effect in GaAs/AlGaAs multiple quantum wells grown in low temperature Huang Q, Guo LW, Zhang MH, Zhang YF, Han YJ, Zhou JM |
123 - 126 |
Work function of GaAs (001) surface obtained by the electron counting model Inoue N, Higashino T, Tanahashi K, Kawamura Y |
127 - 131 |
Using photoluminescence as optimization criterion to achieve high-quality InGaAs/AlGaAs pHEMT structure Cao X, Zeng YP, Cui LJ, Kong MY, Pan LA, Wang BQ, Zhu ZP |
132 - 137 |
Modification of GaAs/AlGaAs asymmetrically coupled double quantum well characteristics by proton implantation induced intermixing Miao ZL, Lu W, Chen PP, Li ZF, Cai WY, Yuan XZ, Liu P, Shi GL, Xu WL, Shen XC, Chen CM, Zhu DZ, Hu J, Li MQ |
138 - 142 |
Strong room-temperature exciton-photon coupling in low-finesse microcavities grown by molecular-beam epitaxy Sun JM, Zhang YF, Han YJ, Wang WX, Bao CL, Li W, Zhou JM, Huang Q, Feng BH, Zhang XL |
143 - 149 |
Cost-effective, high-volume molecular beam epitaxy using a multi 6-in wafer reactor Leung L, Davison D, Cornfeld A, Towner F, Hartzell D |
150 - 154 |
Environmental safety issues for molecular beam epitaxy platform growth technology Izumi S, Shirahama H, Kouji Y |
155 - 160 |
Characterization of high indium content metamorphic InGaAs/InAlAs modulation-doped heterostructures Gozu S, Kita T, Sato Y, Yamada S, Tomizawa M |
161 - 166 |
Critical layer thickness study in In0.75Ga0.25As/In0.5Al0.5As pseudomorphic resonant tunneling diode structure grown on GaAs substrates Gozu S, Kita T, Kikutani T, Yamada S |
167 - 171 |
Improvement of current leakage in the InAs photodetector by molecular beam epitaxy Lin RM, Tang SF, Lee SC, Kuan CH |
172 - 176 |
GaAs absorber layer growth for broadband AlGaAs/fluoride SESAMs Schon S, Haiml M, Gallmann L, Keller U |
177 - 182 |
MBE grown monocrystalline GaAs films on polycrystalline AlN thick films for power device applications Wang Y, Wai LY, Liu H, Zhang XX, Chang YC, Luo HL, Lou LR, Fang RC |
183 - 192 |
GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices Koh S, Kondo T, Shiraki Y, Ito R |
193 - 196 |
Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding Hatzopoulos Z, Cengher D, Deligeorgis G, Androulidaki M, Aperathitis E, Halkias G, Georgakilas A |
197 - 201 |
MBE-grown GaAs/AlGaAs and strained InGaAs/AlGaAs/GaAs quantum cascade lasers Strasser G, Gianordoli S, Schrenk W, Gornik E, Mucklich A, Helm M |
202 - 205 |
High-power, low-beam-divergence 980 nm laser arrays with nonabsorbing facets Yi Q, Bo BX, Zhang BS, Gao X, Zhang XD, Shi JW |
206 - 209 |
High-power AlGaAs/GaAs broad-area lasers grown by MBE Baoxue B, Yi B, Xin G, Guotong D, Dingsan G |
210 - 213 |
High-quality metamorphic HEMT grown on GaAs substrates by MBE Zeng YP, Cao X, Cui LJ, Kong MY, Pan L, Wang BQ, Zhu ZP |
214 - 217 |
GaAs/InGaAS/AlGaAs MODFETs with a very thin buffer layer and very high transconductances Chang YC, Luo HL, Wang Y |
218 - 222 |
Charge density control of single and double delta-doped PHEMT grown by molecular beam epitaxy Zhou GL, Liu W, Lin ME |
223 - 227 |
DC and RF characteristics of MBE grown GaAs barrier diode Guo FM, Li AZ, Zheng YL, Wu J, Xia GQ |
228 - 232 |
MBE grown vertical emitter ballasting resistors to reduce the emitter current crowding effect in heterojunction bipolar transistors Chang YC, Luo HL, Wang Y |
233 - 237 |
Low shot noise GaAs/AlGaAs heterojunction phototransistors grown by MBE with a delta-doped base Luo HL, Chan HK, Chang YC, Wang Y, Dai YS, Zhang XF |
238 - 243 |
Implementation of integrated real-time multi-sensors on a multi-wafer production MBE system Wang G, Ren G, Le L, Lee HP, Pinsukanjana P, Hubbard J, Kao YC |
244 - 248 |
Oxygen-related deep level defects in solid-source MBE grown GaInP Xiang N, Tukiainen A, Dekker J, Likonen J, Pessa M |
249 - 254 |
Growth of GaInP on misoriented substrates using solid source MBE Orsila S, Tukiainen A, Uusimaa P, Dekker J, Leinonen T, Pessa M |
255 - 259 |
Growth of strained Ga1-xInxP layers on GaP (001) by gas source molecular beam epitaxy: similarities and differences with the growth of strained arsenides Wallart X, Deresmes D, Mollot F |
260 - 265 |
Molecular beam epitaxy growth of InP layers on GaAs substrates using GaP decomposition source Ratanathammaphan S, Thainoi S, Changmoang P, Sopitpan S, Antarasena C |
266 - 270 |
Substrate temperature dependence of surface migration of As atoms during molecular beam epitaxy of GaAsP on a (411)A GaAs substrate Tatsuoka Y, Uemura M, Kitada T, Shimomura S, Hiyamizu S |
271 - 274 |
Epitaxial growth and structural characterization of AlAs/AlP superlattices Oishi Y, Nagano M, Ohnuma T |
275 - 278 |
Epitaxial growth and photoluminescence of AlAs/GaP short-period superlattices Nagano M, Oishi Y, Ohnuma T |
279 - 283 |
Growth of GaP on Si substrates by solid-source molecular beam epitaxy Sadeghi M, Wang SM |
284 - 288 |
Low-temperature MBE growth and characteristics of InP-based AlInAs/GaInAs MQW structures Kuenzel H, Biermann K, Nickel D, Elsaesser T |
289 - 293 |
Optimized channel thickness for high electron mobility in pseudomorphic In0.74Ga0.26As/In0.52Al0.48As quantum-well HEMT structures with (411)A super-flat interfaces grown by MBE Kitada T, Aoki T, Watanabe I, Shimomura S, Hiyamizu S |
294 - 297 |
Electroluminescence of In0.53Ga0.47As/GaAs0.5Sb0.5 type II multiple quantum well diodes lattice-matched to InP Takasaki H, Kawamura Y, Katayama T, Yamamoto A, Inoue N |
298 - 302 |
Tertiarybutylarsine (TBAs) and -phosphine (TBP) as group V-precursors for gas source molecular beam epitaxy for optoelectronic applications Mayer B, Reithmaier JP, Forchel A |
303 - 306 |
GSMBE growth of InP-based MSM/HEMT OEIC structures Chen JX, Li AZ, Chen YQ, Yang QK, Chen XJ |
307 - 312 |
Gas source MBE growth of TlInGaAs/InP DH structures for the application to WDM optical fiber communication systems Asahi H, Konishi K, Maeda O, Ayabe A, Lee HJ, Mizobata A, Asami K, Gonda S |
313 - 318 |
The effect of dispersion of the refractive index on the performance of mid-infrared quantum cascade lasers Li AZ, Chen JX, Yang QK, Zhang YG, Lin C |
319 - 323 |
AlGaInAs/InP-epitaxy for long wavelength vertical-cavity surface-emitting lasers Boehm G, Ortsiefer M, Shau R, Koehler F, Meyer R, Amann MC |
324 - 328 |
Red vertical-cavity surface-emitting lasers grown by solid-source molecular beam epitaxy Saarinen M, Xiang N, Vilokkinen V, Melanen P, Orsila S, Uusimaa P, Savolainen P, Toivonen M, Pessa M |
329 - 333 |
Characteristics of strain compensated 1.3 mu m InAsP/InGaAsP ridge waveguide laser diodes grown by gas source MBE Zhang YG, Chen JX, Chen YQ, Qi M, Li AZ, Frojdh K, Stoltz B |
334 - 337 |
Long wavelength InGaAs-InGaAlAs-InP lasers grown in MBE Kuang GK, Bohm G, Grau M, Rosel G, Amann MC |
338 - 342 |
Quasi RT-CW operation of InGaAs/InGaAsP strained quantum well lasers Chen JX, Li AZ, Chen YQ, Guo FM, Lin C, Zhang YG, Qi M |
343 - 345 |
InGaAs/InGaAsP microdisk lasers grown by GSMBE Wu GZ, Wang XH, Zheng Q, Ren DC, Zhang XD |
346 - 351 |
Resonant cavity light-emitting diodes grown by solid source MBE Orsila S, Leinonen T, Uusimaa P, Saarinen M, Guina M, Sipila P, Vilokkinen V, Melanen P, Dumitrescu M, Pessa M |
352 - 356 |
GSMBE grown In0.49Ga0.51P/GaAs heterojunction bipolar transistors with heavily beryllium doped base and undoped Spacer Chen XJ, Li AZ, Chen JX, Chen YQ, Yang QK |
357 - 361 |
GSMBE growth of InGaP/(In)GaAs modulation-doped heterostructures and their applications to HEMT and HHMT Li AZ, Chen JX, Chen YQ, Yang QK, Chen XJ, Peng P |
362 - 365 |
High-performance planar Al0.48In0.52As/In0.53Ga0.47As high electron mobility transistors Kuo JM, Wang YC, Weiner JS, Sivco D, Cho AY, Chen YK |
366 - 370 |
A simple approach to structural stability of semiconductors and their interfaces Ito T, Shiraishi K, Taguchi A |
371 - 375 |
Hydrogen behavior in GaN epilayers grown by NH3-MBE Kong MY, Zhang JP, Wang XL, Sun DZ |
376 - 380 |
Current-induced migration of surface adatoms during GaN growth by molecular beam epitaxy Zheng LX, Xie MH, Xu SJ, Cheung SH, Tong SY |
381 - 385 |
Limitations in MBE-grown GaN and AlGaN/GaN due to dislocations and lateral inhomogeneities Gurusinghe KKMN, Falth F, Andersson TG |
386 - 389 |
High-quality GaN grown by gas-source MBE Wang JX, Sun DZ, Wang XL, Li JM, Zeng YP, Hou X, Lin LY |
390 - 394 |
Epitaxial growth and characterization of GaN Films on (001) GaAs substrates by radio-frequency molecular beam epitaxy Liu HF, Chen H, Wan L, Li ZQ, Huang Q, Zhou JM |
395 - 398 |
Investigation of the initial growth of cubic-GaN using an AlGaAs buffer layer grown on GaAs (100) by molecular beam epitaxy Kimura R, Takahashi K |
399 - 403 |
Orientation relationship between hexagonal inclusions and cubic GaN grown on GaAs(001) substrates Qu B, Zheng XH, Wang YT, Xu DP, Lin SM, Yang H, Liang JW |
404 - 409 |
Experimental investigation of inclusion of hexagonal GaN phase-domain by varying nitrogen-beam direction to a < 111 > axis in MBE growth of cubic GaN Hayashi H, Hayashida A, Jia A, Takahashi K, Yoshikawa A |
410 - 414 |
Correlation of the structural and optical properties of GaN grown on vicinal (001) GaAs substrates with the plasma-assisted MBE growth conditions Georgakilas A, Amimer K, Tzanetakis P, Hatzopoulos Z, Cengher M, Pecz B, Czigany Z, Toth L, Baidakova MV, Sakharov AV, Davydov VY |
415 - 419 |
Post growth thermal annealing of GaN grown by RF plasma MBE Li W, Li AZ |
420 - 424 |
Photoluminescence study of Si doping cubic GaN grown on (001) GaAs substrates by molecular beam epitaxy Li ZQ, Chen H, Liu HF, Wan L, Huang Q, Zhou JM |
425 - 430 |
Molecular beam epitaxial growth of GaN on (100)- and (111) Si substrates coated with a thin SiC layer Cervantes-Contreras M, Lopez-Lopez M, Melendez-Lira M, Tamura M, Hiroyama Y |
431 - 436 |
Influence of substrate nitridation before growth on initial growth process of GaN heteroepitaxial layers grown on Si(001) and Si(111) substrates by ECR-MBE Yodo T, Ando H, Tsuchiya H, Nosei D, Shimeno M, Harada Y |
437 - 441 |
M-plane GaN(1(1)over-bar-00) grown on gamma-LiAlO2(100): nitride semiconductors free of internal electrostatic fields Waltereit P, Brandt O, Ramsteiner M, Trampert A, Grahn HT, Menniger J, Reiche M, Ploog KH |
442 - 446 |
Growth of high-quality polycrystalline GaN on glass substrate by gas source molecular beam epitaxy Tampo H, Asahi H, Imanishi Y, Hiroki M, Ohnishi K, Yamada K, Asami K, Gonda S |
447 - 452 |
Growth and characterizations of AlGaN/GaN heterostructures using multi-AlN buffer layers in plasma-assisted molecular beam epitaxy Shen XQ, Ide T, Cho SH, Shimizu M, Okumura H, Sonoda S, Shimizu S |
453 - 457 |
Optical properties and ordering of AlxGa1-xN MBE-layers Ebling DG, Kirste L, Benz KW, Teofilov N, Thonke K, Sauer R |
458 - 465 |
Optical investigation of MBE grown Si-doped AlxGa1-xN as a function of nominal Al mole fraction up to 0.5 McFall JL, Hengehold RL, Yeo YK, Van Nostrand JE, Saxler AW |
466 - 470 |
InGaN heterostructures grown by molecular beam epitaxy: from growth mechanism to optical properties Damilano B, Grandjean N, Vezian S, Massies J |
471 - 475 |
Growth and characterization of cubic InGaN epilayers on 3C-SiC by RF MBE Kitamura T, Cho SH, Ishida Y, Ide T, Shen XQ, Nakanishi H, Chichibu S, Okumura H |
476 - 480 |
Maskless selective epitaxy of InGaN by an InGa low energy focused ion beam and dimethylhydrazine Cho DH, Tanaka M, Pak K |
481 - 485 |
Physical properties of InN with the band gap energy of 1.1eV Inushima T, Mamutin VV, Vekshin VA, Ivanov SV, Sakon T, Motokawa M, Ohoya S |
486 - 490 |
Growth of GaNAs films by molecular beam epitaxy Foxon CT, Novikov SV, Campion RP, Davis CS, Cheng TS, Winser AJ, Harrison I |
491 - 495 |
Control of growth process and dislocation generation of GaAs1-xNx grown by all-solid-source molecular beam epitaxy Fujimoto Y, Yonezu H, Momose K, Utsumi A, Furukawa Y |
496 - 500 |
Structural and optical properties of MBE grown GaNAs/GaAs quantum well structures Noda T, Koshiba S, Nagamune Y, Sakaki H |
501 - 505 |
Optical transitions and type-II band lineup of MBE-grown GaNAs/GaAs single-quantum-well structures Sun BQ, Jiang DS, Pan Z, Li LH, Wu RH |
506 - 515 |
Nitrogen incorporation in group III-nitride-arsenide materials grown by elemental source molecular beam epitaxy Spruytte SG, Larson MC, Wampler W, Coldren CW, Petersen HE, Harris JS |
516 - 520 |
Growth and characterization of GaInNAs/GaAs by plasma-assisted molecular beam epitaxy Pan Z, Li LH, Zhang W, Wang XU, Lin YW, Wu RH |
521 - 526 |
Molecular beam epitaxy of GaInNAs by using solid source arsenic Kitatani T, Kondow M, Tanaka T |
527 - 531 |
Quality improvement of GaInNAs/GaAs quantum wells grown by plasma-assisted molecular beam epitaxy Li LH, Pan Z, Zhang W, Lin YW, Wang XY, Wu RH |
532 - 535 |
RF-MBE growth and Raman scattering characterization of lattice-matched GaInNAs on GaAs(001) substrates Hashimoto A, Furuhata T, Kitano T, Nguyen AK, Masuda A, Yamamoto A |
536 - 540 |
Improving properties of GaInNAs with a short-period GaInAs/GaNAs superlattice Hong YG, Tu CW, Ahrenkiel RK |
541 - 544 |
Strain-compensated GaInNAs/GaAsP/GaAs/GaInP quantum well lasers grown by gas-source molecular beam epitaxy Li W, Turpeinen J, Melanen P, Savolainen P, Uusimaa P, Pessa M |
545 - 552 |
Growth of high quality InGaAsN heterostructures and their laser application Egorov AY, Bernklau D, Borchert B, Illek S, Livshits D, Rucki A, Schuster M, Kaschner A, Hoffmann A, Dumitras G, Amann MC, Riechert H |
553 - 557 |
Investigations on GaAsSbN/GaAs quantum wells for 1.3-1.55 mu m emission Harmand JC, Ungaro G, Ramos J, Rao EVK, Saint-Girons G, Teissier R, Le Roux G, Largeau L, Patriarche G |
558 - 561 |
Gas-source MBE growth of Ga(In)NP/GaP structures and their applications for red light-emitting diodes Xin HP, Welty RJ, Hong YG, Tu CW |
562 - 565 |
Calibration of the arsenic mole fraction in MBE grown GaAsySb1-y and AlxGa1-xAsySb1-y (y < 0.2) Selvig E, Fimland BO, Skauli T, Haakenaasen R |
566 - 570 |
Characterisation and optimisation of MBE grown arsenide/antimonide interfaces Prevot I, Marcadet X, Durand O, Bisaro R, Bouchier A, Julien FH |
571 - 576 |
Substrate lattice constant effect on the miscibility gap of MBE grown InAsSb Miyoshi H, Horikoshi Y |
577 - 581 |
Dopant-induced interface disorder in InGaAs/AlAsSb heterostructures lattice matched to InP grown by molecular beam epitaxy Mozume T, Georgiev N, Yoshida H |
582 - 585 |
MBE grown 2.0 mu m InGaAsSb/AlGaAsSb MQW ridge waveguide laser diodes Zhang YG, Li AZ, Zheng YL, Lin C, Jian GZ |
586 - 590 |
MBE growth of InAs/InAsSb/InAlAsSb "W" quantum well laser diodes emitting near 3 mu m Wilk A, Fraisse B, Christol P, Boissier G, Grech P, El Gazouli M, Rouillard Y, Baranov AN, Joullie A |
591 - 594 |
Temperature and injection current dependencies of 2 mu m InGaAsSb/AlGaAsSb multiple quantum-well ridge-waveguide lasers Lin C, Li AZ |
595 - 599 |
Growth and layer structure optimization of 2.26 mu m (AlGaIn)(AsSb) diode lasers for room temperature operation Simanowski S, Mermelstein C, Walther M, Herres N, Kiefer R, Rattunde M, Schmitz J, Wagner J, Weimann G |
600 - 604 |
MBE growth of mid-infrared antimonide LEDs with strained electron barriers Li X, Heber J, Pullin M, Gevaux D, Phillips CC |
605 - 608 |
Mid-infrared GaInAsSb photodetector grown by solid source molecular beam epitaxy Lin C, Zheng YL, Li AZ |
609 - 613 |
MBE growth of room-temperature InAsSb mid-infrared detectors Marcadet X, Rakovska A, Prevot I, Glastre G, Vinter B, Berger V |
614 - 618 |
Growth and characterization of InMnAsSb for the sensor-memory device application at long wavelength region Zhou YK, Asahi H, Okumura S, Kanamura M, Asakura J, Asami K, Nakajima M, Harima H, Gonda S |
619 - 624 |
InSb thin films grown on GaAs substrate and their magneto-resistance effect Okamoto A, Ashihara A, Akaogi T, Shibasaki I |
625 - 629 |
Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts Sigmund J, Saglam M, Vogt A, Hartnagel HL, Buschmann V, Wieder T, Fuess H |
630 - 633 |
MBE grown high-quality CdSe-based islands and quantum wells using CdS compound and Se Kurtz E, Schmidt M, Dal Don B, Wachter S, Litvinov D, Gerthsen D, Kalt H, Klingshirn C |
634 - 638 |
Growth of zinc blende MgS and MgS/ZnSe quantum wells by MBE using ZnS as a sulphur source Bradford C, O'Donnell CB, Urbaszek B, Balocchi A, Morhain C, Prior KA, Cavenett BC |
639 - 644 |
Study of the crystal quality and Ga-segregation in ZnSe films grown by molecular beam epitaxy on AlxGa1-xAs and InxGa1-xAs buffer layers on GaAs substrates Mendez-Garcia VH, Lopez-Lopez M, Lastras-Martinez A, Vidal MA, Luyo-Alvarado J, Melendez-Lira M, Momose K, Yonezu H |
645 - 649 |
Nanostructures formed on CdSe/ZnSe surfaces Zhang BP, Manh DD, Wakatsuki K, Segawa Y |
650 - 654 |
Growth of ZnCdSe quantum wells at low substrate temperatures using migration enhanced epitaxy Leonardi K, Passow T, Klude M, Hommel D |
655 - 659 |
Growth of (Zn,Cd)S and (Zn,Mg)S containing structures on GaP Prior KA, Telfer SA, Tang X, Morhain C, Urbaszek B, O'Donnell C, Tomasini P, Balocchi A, Cavenett BC |
660 - 664 |
MBE growth of BeZnCdSe quaternaries, MgSe/BeZnCdSe superlattice and quantum well structures on InP substrates Takizawa M, Nomura I, Che SB, Kikuchi A, Shimomura K, Kishino K |
665 - 670 |
Monte Carlo simulation of defect formation in ZnSe/GaAs heterovalent epitaxy Nakayama T, Sano K |
671 - 676 |
High-quality CdTe growth in the (100)-orientation on (100)-GaAs substrates by molecular beam epitaxy Koike K, Tanaka T, Li SW, Yano M |
677 - 682 |
Composition control and surface defects of MBE-grown HgCdTe He L, Wu Y, Chen L, Wang SL, Yu MF, Qiao YM, Yang JR, Li YJ, Ding RJ, Zhang QY |
683 - 687 |
Electron-phonon coupling of deep emission in ZnSeTe alloy Sasaki M, Takojima N, Kimura N, Tsubono I, Suzuki K, Sawada T, Imai K |
688 - 692 |
Auger parameter shift and extra-atomic-relaxation of ZnS1-xTex alloys Wong JWL, Sun WD, Ma ZH, Sou IK |
693 - 698 |
MBE growth and luminescence properties of hybrid Al(Ga)Sb/InAs/Cd(Mg)Se heterostructures Ivanov SV, Solov'ev VA, Toropov AA, Sedova IV, Terent'ev YV, Kaygorodov VA, Tkachman MG, Kop'ev PS, Molenkamp LW |
699 - 704 |
Homoepitaxial distributed Bragg structures grown by MBE on ZnSe substrates Troubenko PA, Kozlovsky VI, Yao T, Korostelin YV, Roddatis VV |
705 - 709 |
ZnMgS-based solar-blind UV photodetectors grown by MBE Sou IK, Wu MCW, Wong KS, Wong GKL |
710 - 716 |
Red-green-blue light emitting diodes and distributed Bragg reflectors based on ZnCdMgSe lattice-matched to InP Tamargo MC, Guo SP, Maksimov O, Chen YC, Peiris FC, Furdyna JK |
717 - 721 |
Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector Wong KS, Sun T, Fung BKK, Sou IK, Wong GKL |
722 - 728 |
Molecular beam epitaxy of lead salt-based vertical cavity surface emitting lasers for the 4-6 mu m spectral region Springholz G, Schwarzl T, Heiss W, Aigle M, Pascher H |
729 - 734 |
The development of RAS and RHEED as in situ probes to monitor dopant segregation in GS-MBE on Si (001) Hartell AD, Tok ES, Zhang J |
735 - 739 |
Modified GSMBE for higher growth rate and non-selective growth Woods NJ, Breton G, Graoui H, Zhang J |
740 - 743 |
The formation of dislocations in the interface of GeSi/low-temperature Si buffer grown on Si (001) Peng CS, Li YK, Huang Q, Zhou JM |
744 - 748 |
MBE-based SiGe/Si heterojunction multilayer structures Li KC, Zhang J, Liu DG, Yi Q, Guo L, Xu SL, Ni WX |
749 - 755 |
Structural characterisation and stability of Si1-xGex/Si(100) heterostructures grown by molecular beam epitaxy Re M, Scalese S, Mirabella S, Terrasi A, Priolo F, Rimini E, Berti M, Coati A, Drigo A, Carnera A, De Salvador D, Spinella C, La Mantia A |
756 - 760 |
X-ray reciprocal space mapping studies of strain relaxation in thin SiGe layers (<= 100 nm) using a low temperature growth step Ni WX, Lyutovich K, Alami J, Tengstedt C, Bauer M, Kasper E |
761 - 765 |
Characterization of low temperature grown Si layer for SiGe pseudo-substrates by positron annihilation spectroscopy Ueno T, Irisawa T, Shiraki Y, Uedono A, Tanigawa S, Suzuki R, Ohdaira T, Mikado T |
766 - 769 |
Effects of annealing time and Si cap layer thickness on the Si/SiGe/Si heterostructures thermal stability Gao F, Lin YX, Huang DD, Li JP, Sun DZ, Kong MY, Zeng YP, Li JM, Lin LY |
770 - 776 |
Si-based resonant inter- and intraband tunneling diodes Eberl K, Duschl R, Schmidt OG, Denker U, Haug R |
777 - 781 |
MBE growth of Si on SiC(0001): from superstructures to islands Fissel A, Akhtariev R, Kaiser U, Richter W |
782 - 785 |
Modification of the growth mode of Ge on Si(100) in the presence of buried Ge islands Usami N, Miura M, Ito Y, Araki Y, Nakajima K, Shiraki Y |
786 - 790 |
Study of Ge0.96Si0.04 epilayers grown on Si (001) at high temperature Peng CS, Kawanami H, Li YK, Li GH, Huang Q, Zhou JM |
791 - 795 |
Conduction-type control of Ge films grown on (NH4)(2)S-treated GaAs by molecular beam epitaxy Inada M, Fujishima T, Umezu I, Sugimura A, Yamada S |
796 - 800 |
Thermal stability of Ge channel modulation doped structures Irisawa T, Ueno T, Miura H, Shiraki Y |
801 - 804 |
Reactive ion etching of Si1-xGex alloy with hydrogen bromide Guo L, Li KC, Liu DG, Ou YH, Zhang J, Yi Q, Xu SL |
805 - 810 |
High-quality SIC epitaxial layers and low-dimensional heteropolytypic SIC structures grown by solid-source MBE Fissel A |
811 - 815 |
Epitaxial growth of SiC on complex substrates Sun GS, Li JM, Luo MC, Zhu SR, Wang L, Zhang FF, Lin LY |
816 - 819 |
Homoepitaxial growth and device characteristics of SiC on Si-face (0001) 6H-SiC Li JM, Sun GS, Zhu SR, Wang L, Luo MC, Zhang FF, Lin LY |
820 - 824 |
Carbon nanotubes grown by gas source molecular beam epitaxy Wan J, Luo YH, Liu JL, Li RG, Jin G, Choi SD, Wang KL |
825 - 828 |
Two-step growth of C-60 films on H-terminated Si (111) substrate Takashima H, Nakaya M, Yamamoto A, Hashimoto A |
829 - 833 |
Solid C-60 growth on hexagonal GaN (0001) surface Takashima H, Nakaya M, Yamamoto A, Hashimoto A |
834 - 838 |
MBE growth, structure and magnetic properties of MnAs on GaAs on a microscopic scale Daweritz L, Schippan F, Trampert A, Kastner M, Behme G, Wang ZM, Moreno M, Schutzendube P, Ploog KH |
839 - 846 |
Enhancement of magneto-optical effect in a GaAs : MnAs hybrid nanostructure sandwiched by GaAs/AlAs distributed Bragg reflectors: epitaxial semiconductor-based magneto-photonic crystal Tanaka M, Shimizu H, Miyamura M |
847 - 851 |
Ferromagnet (MnAs)/semiconductor (GaAs,AlAs,InAs)/ferromagnet (MnAs) trilayer heterostructures: Epitaxial growth and magnetotransport properties Tanaka M, Takahashi K |
852 - 856 |
Control of the Schottky barrier height in epitaxial magnetic MnAs/n-GaAs and MnSb/n-GaAs contacts Van Roy W, Roelfsema RFB, Liu ZY, Akinaga H, Miyanishi S, Manago T, Borghs G, De Boeck J |
857 - 861 |
Low temperature molecular beam epitaxy growth and properties of(Ca, Er)As Tanaka M, Mishima Y |
862 - 866 |
Epitaxial growth of the half-metallic ferromagnet NiMnSb on GaAs(001) Van Roy W, Borghs G, De Boeck J |
867 - 873 |
Growth and tunneling spectroscopy study of Fe/(GaAs,AlAs)/Ga1-xMnxAs ferromagnet/semiconductor heterostructures Liu ZY, Boeve H, Van Roy W, Nemeth S, Moshchalkov VV, Borghs G, De Boeck J |
874 - 881 |
MBE growth process of ferromagnetic MnAs on Si(111) substrates Nazmul AM, Banshchikov AG, Shimizu H, Tanaka M |
882 - 887 |
Growth of MnSi1.7 on Si(001) by MBE Teichert S, Schwendler S, Sarkar DK, Mogilatenko A, Falke M, Beddies G, Kleint C, Hinneberg HJ |
888 - 892 |
Tunneling spectroscopy in Fe-GaN-Fe trilayer structures grown by MBE using ECR microwave plasma nitrogen source Nemeth S, Boeve H, Liu ZY, Attenborough K, Bender H, Nistor L, Borghs G, De Boeck J |
893 - 898 |
Ferromagnetic metals on II-VI semiconductors: epitaxial growth, and structural and magnetic properties Bourgognon C, Tatarenko S, Cibert J, Boukari H, Etgens VH, Carbonell L, Gilles B, Marty A, Samson Y |
899 - 905 |
Room temperature magnetic imaging of magnetic storage media and garnet epilayers in the presence of external magnetic fields using a sub-micron GaAs SHPM Sandhu A, Masuda H, Oral A, Bending SJ |
906 - 910 |
The vacuum wafer bonding technique as an alternative method for the fabrication of metal/semiconductor heterostructures Dessein K, Kumar PSA, Nemeth S, Delaey L, Borghs G, De Boeck J |
911 - 916 |
Nucleation and growth of ZnO on (1(1)over-bar-20) sapphire substrates using molecular beam epitaxy Fons P, Iwata K, Yamada A, Matsubara K, Niki S, Nakahara K, Tanabe T, Takasu H |
917 - 922 |
Plasma-assisted molecular beam epitaxy of ZnO thin films on sapphire substrates with an MgO buffer Chen YF, Ko HJ, Hong SK, Inaba K, Segawa Y, Yao T |
923 - 928 |
Growth and characterization of undoped ZnO films for single crystal based device use by radical source molecular beam epitaxy (RS-MBE) Nakahara K, Takasu H, Fons P, Iwata K, Yamada A, Matsubara K, Hunger R, Niki S |
929 - 935 |
Laser molecular beam epitaxy and characterization of perovskite oxide thin films Yang GZ, Lu HB, Chen F, Zhao T, Chen ZH |
936 - 943 |
Epitaxial oxides on silicon grown by molecular beam epitaxy Droopad R, Yu ZY, Ramdani J, Hilt L, Curless J, Overgaard C, Edwards JL, Finder J, Eisenbeiser K, Wang J, Kaushik V, Ngyuen BY, Ooms B |
944 - 949 |
Evaluation of ZnO substrates for homoepitaxy Wenisch H, Kirchner V, Hong SK, Chen YF, Ko HJ, Yao T |
950 - 954 |
Optical in situ monitoring of complex oxide thin film laser molecular beam epitaxy Chen F, Lu HB, Zhao T, Chen ZH, Yang GZ |
955 - 959 |
Structural characteristic and magnetic properties of Mn oxide films grown by plasma-assisted MBE Guo LW, Makino H, Ko HJ, Chen YF, Hanada T, Peng DL, Inaba K, Yao T |
960 - 965 |
Growth of PrSrMnO3-like thin films on NGO (110) substrates by plasma assisted MBE Liu G, Wang H, Makino H, Ko HJ, Hanada T, Yao T |
966 - 969 |
Enhanced confinement energy in strained asymmetric T-shaped quantum wires Jensen JR, Hvam JM, Langbein W |
970 - 974 |
Stacking effect of self-organized In0.15Ga0.85As quantum wires grown on (775)B-oriented GaAs substrates by molecular beam epitaxy Ohno Y, Nitta T, Shimomura S, Hiyamizu S |
975 - 979 |
InAs/InP(001) quantum wire formation due to anisotropic stress relaxation: in situ stress measurements Garcia JM, Gonzalez L, Gonzalez MU, Silveira JP, Gonzalez Y, Briones F |
980 - 984 |
Fabrication of quantum wires by in-situ ion etching and MBE overgrowth Heyn C, Klein C, Kramp S, Beyer S, Gunther S, Heitmann D, Hansen W |
985 - 989 |
Self-assembled GaInAs quantum wire heterostructure design for temperature stabilized emission wavelength Wohlert DE, Pickrell GW, Chang KL, Hsieh KC, Cheng KY |
990 - 994 |
Formation and size evolution of self-assembled quantum dots Heyn C, Dumat C |
995 - 999 |
Surface stress effects during MBE growth of III-V semiconductor nanostructures Silveira JP, Garcia JM, Briones F |
1000 - 1004 |
Growth rate effects on the size, composition and optical properties of InAs/GaAs quantum dots grown by molecular beam epitaxy Joyce PB, Krzyzewski TJ, Bell GR, Jones TS, Malik S, Childs D, Murray R |
1005 - 1009 |
Size and shape evolution of self-assembled coherent InAs/GaAs quantum dots influenced by seed layer Liu HY, Xu B, Ding D, Chen YH, Zhang JF, Wu J, Wang ZG |
1010 - 1015 |
InAs/GaAs self-organized quantum dots on (411)A GaAs by molecular beam epitaxy Kiravittaya S, Songmuang R, Changmuang P, Sopitpan S, Ratanathammaphan S, Sawadsaringkarn M, Panyakeow S |
1016 - 1019 |
Comparison of InAs islands self-assembled on pseudomorphic and metamorphic InAlAs buffer layers grown on GaAs substrate Cordier Y, Miska P, Ferre D |
1020 - 1024 |
Structural characterization of self-assembled InAs quantum dots grown by MBE Zhang K, Heyn C, Hansen W, Schmidt T, Falta J |
1025 - 1028 |
Correlation between structural and optical properties of InAs quantum dots along their evolution da Silva MJ, Quivy AA, Gonzalez-Borrero PP, Moshegov NT, Marega E |
1029 - 1033 |
Scanning tunneling microscopy study of InAs islanding on GaAs(001) Hasegawa S, Arakawa K, Tanaka M, Nakashima H |
1034 - 1038 |
Blueshift of photoluminescence peak in ten periods InAs quantum dots superlattice Lin RM, Lee SC, Lin HH, Dai YT, Chen YF |
1039 - 1043 |
Abnormal temperature-dependent photoluminescence characteristics of stacked InAs self-assembled quantum dot structures grown by molecular beam epitaxy Kang TW, Oh JE |
1044 - 1048 |
Improved electroluminescence of InAs quantum dots with strain reducing layer Yeh NT, Nee TE, Chyi JI, Chia CT, Hsu TM, Huang CC |
1049 - 1052 |
Effects of regularity of honeycomb hollows formed by the anodization of GaAs substrates on the molecular-beam epitaxial growth of InAs dots Morishita Y, Sunagawa J, Yumoto Y, Kawai S |
1053 - 1056 |
Selective growth of InAs/GaAs self-organized quantum dots by shadow mask technique Songmuang R, Kiravittaya S, Thainoi S, Changmuang P, Sopitpan S, Ratanathammaphan S, Sawadsaringkarn M, Panyakeow S |
1057 - 1061 |
Deep level defects of InAs quantum dots grown on GaAs by molecular beam epitaxy Park CJ, Kim HB, Lee YH, Kim DY, Kang TW, Hong CY, Cho HY, Kim MD |
1062 - 1068 |
Modification of emission wavelength of self-assembled In(Ga)As/GaAs quantum dots covered by InxGa1-xAs(0 <= x <= 0.3) layer Niu ZC, Wang XD, Miao ZH, Feng SL |
1069 - 1072 |
Indium segregation in the fabrication of InGaAs concave disks by heterogeneous droplet epitaxy Mano T, Tsukamoto S, Koguchi N, Fujioka H, Oshima M |
1073 - 1077 |
Photoluminescence studies of GaAs quantum dots grown by droplet epitaxy Watanabe K, Tsukamoto S, Gotoh Y, Koguchi N |
1078 - 1083 |
Area selective epitaxy of anti-dot structure of GaAs by solid source MBE Hasegawa H, Kuriyama H, Ito M, Horikoshi Y |
1084 - 1088 |
Growth and emission tuning of InAs/InP quantum dots superlattice Zhuang QD, Yoon SF, Zheng HQ |
1089 - 1094 |
InAs/GaInP self-assembled quantum dots: molecular beam epitaxial growth and optical properties Amanai H, Nagao S, Sakaki H |
1095 - 1099 |
Characterization of self-organized GaP/InP quantum dots with scanning tunneling spectroscopy and time-resolved PL spectroscopy Mori J, Asahi H, Noh JH, Fudeta M, Watanabe D, Matsuda S, Asami K, Seki S, Matsui Y, Tagawa S, Gonda S |
1100 - 1105 |
Uniform and ordered self-assembled Ge dots on patterned Si substrates with selectively epitaxial growth technique Jin G, Wan J, Luo YM, Liu JL, Wang KL |
1106 - 1110 |
A two-stage molecular beam epitaxial growth method to fabricate small and uniform Ge quantum dots on Si(100) Jiang WR, Qin J, Hu DZ, Xiong H, Jiang ZM |
1111 - 1115 |
Growth of Ge quantum dot superlattices for thermoelectric applications Liu JL, Khitun A, Wang KL, Borca-Tasciuc T, Liu WL, Chen G, Yu DP |
1116 - 1120 |
Structural and optical properties of CdSe/ZnSe self-organized quantum dots Maehashi K, Yasui N, Ota T, Noma T, Murase Y, Nakashima H |
1121 - 1125 |
Photoluminescence of self-assembled CdSe quantum dots by molecular beam epitaxy Matsumura N, Saito T, Saraie J |
1126 - 1131 |
Phase diagram of lateral and vertical ordering in self-organized PbSe quantum dot superlattice grown MBE Springholz G, Pinczolits M, Bauer G, Kang HH, Salamanca-Riba L |
1132 - 1139 |
Self-assembled quantum dots, wires and quantum-dot lasers Wang ZG, Chen YH, Liu FQ, Xu B |
1140 - 1145 |
Optimisation of MBE growth conditions for InAs quantum dots on (001) GaAs for 1.3 mu m luminescence Ferdos F, Sadeghi M, Zhao QX, Wang SM, Larsson A |
1146 - 1150 |
1300 nm GaAs-based microcavity LED incorporating InAs/GaInAs quantum dots Maleev NA, Sakharov AV, Moeller C, Krestnikov IL, Kovsh AR, Mikhrin SS, Zhukov AE, Ustinov VM, Passenberg W, Pawlowski E, Kunezel H, Tsatsul'nikov AF, Ledentsov NN, Bimberg D, Alferov ZI |
1151 - 1154 |
Low threshold high efficiency MBE grown GaInAs/(Al)GaAs quantum dot lasers emitting at 980 nm Klopf F, Reithmaier JP, Forchel A |
1155 - 1161 |
1.3 mu m InAs/GaAs quantum dot lasers and VCSELs grown by molecular beam epitaxy Ustinov VM, Zhukov AE, Maleev NA, Kovsh AR, Mikhrin SS, Volovik BV, Musikhin YG, Shernyakov YM, Maximov MV, Tsatsul'nikov AF, Ledentsov NN, Alferov ZI, Lott JA, Bimberg D |
1162 - 1165 |
Normal incidence infrared photoconductor of self-assembled InAs quantum dots in modulation doped AlGaAs/GaAs heterostructures Kim MD, Choo AG, Kim TI, Ko SS, Baek DH, Hong SC |
1166 - 1170 |
Threshold voltage shift characterization of vertically stacked InAs nanodots in field-effect transistor Li SW, Koike K, Komai H, Yano M |
1171 - 1176 |
Band-structure and optical gain for InAsP/In(GaAs)P MQW laser structures Chen YQ, Li AZ |