VII - VIII |
Magnetic field-enhanced separations - Introduction Ritter JA, Ebner AD, Navratil JD |
3611 - 3633 |
Separations based on magnetophoretic mobility Zborowski M, Moore LR, Williams PS, Chalmers JJ |
3635 - 3645 |
Retention of ions in a magnetic chromatograph using high-intensity and high-gradient magnetic fields Mitsuhashi K, Yoshizaki R, Ohara T, Matsumoto F, Nagai H, Wada H |
3647 - 3660 |
Magnus separation Rem PC, Fraunholcz N, Schokker EA |
3661 - 3671 |
Efficiency enhancements through the use of magnetic field gradient in orientation magnetic separation for the removal of pollutants by magnetotactic bacteria Bahaj AS, James PAB, Moeschler FD |
3673 - 3692 |
Magnetic sorbent for soil remediation - A waste for waste treatment Macasek F, Navratil JD, Dulanska S |
3693 - 3701 |
Nanocomposite materials for As(V) removal by magnetically intensified adsorption Peleanu I, Zaharescu M, Rau I, Crisan M, Jitianu A, Meghea A |
3703 - 3714 |
Cesium extraction from a novel chemical decontamination process solvent using magnetic microparticles Kaminski MD, Nunez L |
3715 - 3726 |
Capture and retrieval of plutonium oxide particles at ultra-low concentrations using high-gradient magnetic separation Wingo RM, Devlin DJ, Hill DD, Padilla DD, Prenger FC, Worl LA |
3727 - 3753 |
Magnetic field orientation and spatial effects on the retention of paramagnetic nanoparticles with magnetite Ebner AD, Ploehn HJ, Ritter JA |
3755 - 3779 |
Nanolevel magnetic separation model considering flow limitations Cotten GB, Eldredge HB |
3781 - 3791 |
Ferrimagnetic coagulation process for phosphate ion removal using high-gradient magnetic separation Gokon N, Shimada A, Hasegawa N, Kaneko H, Kitamura M, Tamaura Y |