1 - 1 |
Special issue - Proceedings of the 10th International Meeting on Lithium Batteries - Como, Italy, 28 May-2 June 2000 -Preface Scrosati B |
2 - 6 |
Year 2000 R&D status of large-scale lithium ion secondary batteries in the national project of Japan Tanaka T, Ohta K, Arai N |
7 - 12 |
From gems to lithium battery electrodes: the significance of the diamond, ruby (sapphire), spinel and peridot structures Thackeray MM |
13 - 21 |
Aging mechanism in Li ion cells and calendar life predictions Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ |
22 - 24 |
US Army portable power programs Hamlen R, Au G, Brundage M, Hendrickson M, Plichta E, Slane S, Barbarello J |
25 - 27 |
Li ion batteries for aerospace applications Marsh RA, Vukson S, Surampudi S, Ratnakumar BV, Smart MC, Manzo M, Dalton PJ |
28 - 32 |
A short review on the comparison between Li battery systems and rechargeable magnesium battery technology Aurbach D, Gofer Y, Lu Z, Schechter A, Chusid O, Gizbar H, Cohen Y, Ashkenazi V, Moshkovich M, Turgeman R, Levi E |
33 - 38 |
From Rome to Como: 20 years of active research on carbon-based electrodes for lithium batteries at INP-Grenoble Yazami R |
39 - 46 |
The complex electrochemistry of graphite electrodes in lithium-ion batteries Novak P, Joho F, Lanz M, Rykart B, Panitz JC, Alliata D, Kotz R, Haas O |
47 - 51 |
High-capacity carbons for lithium-ion batteries prepared from rice husk Fey GTK, Chen CL |
52 - 57 |
Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D |
58 - 66 |
In situ studies of SEI formation Kong F, Kostecki R, Nadeau G, Song X, Zaghib K, Kinoshita K, McLarnon F |
67 - 69 |
Improved carbon anode properties: pretreatment of particles in polyelectrolyte solution Gaberscek M, Bele M, Drofenik J, Dominko R, Pejovnik S |
70 - 72 |
Charge/discharge characteristics of the coal-tar pitch carbon as negative electrode in Li-ion batteries Kim JS |
73 - 77 |
Direct evidence on anomalous expansion of graphite-negative electrodes on first charge by dilatometry Ohzuku T, Matoba N, Sawai K |
78 - 82 |
Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries Joho F, Rykart B, Blome A, Novak P, Wilhelm H, Spahr ME |
83 - 86 |
Three-electrode button cell for EIS investigation of graphite electrode Martinent A, Le Gorrec B, Montella C, Yazami R |
87 - 91 |
Carbon electrode morphology and thermal stability of the passivation layer Edstrom K, Andersson AM, Bishop A, Fransson L, Lindgren J, Hussenius A |
92 - 96 |
On the correlation among surface chemistry, 3D structure, morphology, electrochemical and impedance behavior of various lithiated carbon electrodes Aurbach D, Gnanaraj JS, Levi MD, Levi EA, Fischer JE, Claye A |
97 - 103 |
Influence of edge and basal plane sites on the electrochemical behavior of flake-like natural graphite for Li-ion batteries Zaghib K, Nadeau G, Kinoshita K |
104 - 106 |
In situ TEM study of the interface carbon/electrolyte Dolle M, Grugeon S, Beaudoin B, Dupont L, Tarascon JM |
107 - 113 |
TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries Ota H, Sato T, Suzuki H, Usami T |
114 - 117 |
Graphite-metal oxide composites as anode for Li-ion batteries Huang H, Kelder EM, Schoonman J |
118 - 121 |
Thermally oxidized graphites as anodes for lithium-ion cells Kumar TP, Stephan AM, Thayananth P, Subramanian V, Gopukumar S, Renganathan NG, Raghavan M, Muniyandi N |
122 - 125 |
Modified carbons for improved anodes in lithium ion cells Buqa H, Golob P, Winter M, Besenhard JO |
126 - 128 |
Surface modification of graphite anodes by combination of high temperature gas treatment and silylation in nonaqueous solution Buqa H, Grogger C, Alvarez MVS, Besenhard JO, Winter M |
129 - 132 |
Effects of synthesis condition of graphitic nanocabon tube on anodic property of Li-ion rechargeable battery Ishihara T, Kawahara A, Nishiguchi H, Yoshio M, Takita Y |
133 - 136 |
Benchmark study on high performing carbon anode materials Lampe-Onnerud C, Shi J, Onnerud P, Chamberlain R, Barnett B |
137 - 139 |
Effects of SEI on the kinetics of lithium intercalation Ratnakumar BV, Smart MC, Surampudi S |
140 - 142 |
Boronated mesophase pitch coke for lithium insertion Frackowiak E, Machnikowski J, Kaczmarska H, Beguin F |
143 - 145 |
Effects of post-treatments on the performance of hard carbons in lithium cells Chevallier F, Gautier S, Salvetat JP, Clinard C, Frackowiak E, Rouzaud JN, Beguin F |
146 - 150 |
A morphological study of SEI film on graphite electrodes Zane D, Antonini A, Pasquali M |
151 - 155 |
Determination of the absolute and relative extents of basal plane surface area and "non-basal plane surface" area of graphites and their impact on anode performance in lithium ion batteries Olivier JP, Winter M |
156 - 158 |
Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode Ogumi Z, Sano A, Inaba M, Abe T |
159 - 164 |
Stable charge/discharge of Li at a graphitized carbon fiber electrode in a pure PC electrolyte and the initial charging loss Yamaguchi K, Suzuki J, Saito M, Sekine K, Takamura T |
165 - 170 |
Li-7-nuclear magnetic resonance observations of lithium insertion into coke carbon modified with mesophase-pitch Sato Y, Tanuma K, Takayama T, Kobayakawa K, Kawai T, Yokoyama A |
171 - 173 |
X-ray photoemission studies of surface pre-treated graphite electrodes Blyth RIR, Buqa H, Netzer FP, Ramsey MG, Besenhard JO, Winter M |
174 - 180 |
Raman microscopy as a quality control tool for electrodes of lithium-ion batteries Panitz JC, Novak P |
181 - 184 |
Sn-Ca amorphous alloy as anode for lithium ion battery Fang L, Chowdari BVR |
185 - 187 |
Aluminum negative electrode in lithium ion batteries Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM |
188 - 190 |
Influence of particle size and matrix in "metal" anodes for Li-ion cells Crosnier O, Devaux X, Brousse T, Fragnaud P, Schleich DM |
191 - 193 |
Stress effect on cycle properties of the silicon thin-film anode Lee SJ, Lee JK, Chung SH, Lee HY, Lee SM, Baik HK |
194 - 197 |
Structural and mechanistic features of intermetallic materials for lithium batteries Vaughey JT, Johnson CS, Kropf AJ, Benedek R, Thackeray MM, Tostmann H, Sarakonsri T, Hackney S, Fransson L, Edstrom K, Thomas JO |
198 - 200 |
SnS2 anode for rechargeable lithium battery Momma T, Shiraishi N, Yoshizawa A, Osaka T, Gedanken A, Zhu JJ, Sominski L |
201 - 203 |
First-principles calculations for Li insertion into InSb Benedek R, Vaughey JT, Thackeray MM, Yang LH, Prasad R |
204 - 207 |
Phase separation and amorphisation in lithium inserted Cu-In-Sn sulfospinels: experimental and theoretical approach Dedryvere R, Denis S, Lippens PE, Olivier-Fourcade J, Jumas JC |
208 - 210 |
Tin/tin oxide thin film electrodes for lithium-ion batteries Sarradin J, Benjelloun N, Taillades G, Ribes M |
211 - 215 |
Graphite-Tin composites as anode materials for lithium-ion batteries Wang GX, Ahn JH, Lindsay MJ, Sun L, Bradhurst DH, Dou SX, Liu HK |
216 - 218 |
Morphology modification and irreversibility compensation for SnO anodes Yang J, Takeda Y, Imanishi N, Xie JY, Yamamoto O |
219 - 222 |
Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery Belliard F, Irvine JTS |
223 - 225 |
Novel tin oxide spinel-based anodes for Li-ion batteries Conner PA, Irvine JTS |
226 - 228 |
The effect of lithium insertion on the structure of tin oxide-based glasses Gejke C, Zanghellini E, Fransson L, Edstrom K, Borjesson L |
229 - 231 |
Electrochemical property of tin oxide thin film by photo-CVD process Kobayashi H, Uebou Y, Ishida T, Tamura S, Mochizuki S, Mihara T, Tabuchi M, Kageyama H, Yamamoto Y |
232 - 234 |
Antimony doping effect on the electrochemical behavior of SnO2 thin film electrodes Santos-Pena J, Brousse T, Sanchez L, Morales J, Schleich DM |
235 - 239 |
Searching for new anode materials for the Li-ion technology: time to deviate from the usual path Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM |
240 - 243 |
Nanomaterial-based Li-ion battery electrodes Li NC, Martin CR, Scrosati B |
244 - 246 |
New composite anode systems combined with Li2.6Co0.4N Takeda Y, Yang J |
247 - 250 |
Electrochemical performance of Pb-3(PO4)(2) anodes in rechargeable lithium batteries Liu ZL, Lee JY |
251 - 253 |
X-ray absorption study of cobalt vanadates during cycling usable as negative electrode in lithium battery Laruelle S, Poizot P, Baudrin E, Briois V, Touboul M, Tarascon JM |
254 - 257 |
A new class of materials for lithium-ion batteries: iron(III) borates Rowsell JLC, Gaubicher J, Nazar LF |
258 - 261 |
Investigation of lead tin fluorides as possible negative electrodes for Li-ion batteries Tovar LLG, Connor PA, Belliard F, Torres-Martinez LM, Irvine JTS |
262 - 264 |
Optimization of physicochemical characteristics of a lithium anode interface for high-efficiency cycling: an effect of electrolyte temperature Ishikawa M, Tasaka Y, Yoshimoto N, Morita M |
265 - 268 |
In situ atomic force microscopy observation of lithium deposition at an elevated temperature Mogi R, Inaba M, Abe T, Ogumi Z |
269 - 273 |
A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes Aurbach D, Gofer Y, Schechter A, Chusid O, Gizbar H, Cohen Y, Moshkovich M, Turgeman R |
274 - 276 |
New phases and phase transitions observed in over-charged states of LiCoO2-based cathode materials Sun X, Yang XQ, McBreen J, Gao Y, Yakovleva MV, Xing XK, Daroux ML |
277 - 281 |
The kinetics of lithium transport through Li1-delta CoO2 thin film electrode by theoretical analysis of current transient and cyclic voltammogram Pyun SI, Shin HC |
282 - 286 |
Electrochemical characterization of layered LiCoO2 films prepared by electrostatic spray deposition Yoon WS, Ban SH, Lee KK, Kim KB, Kim MG, Lee JM |
287 - 289 |
Synthesis and characterization of nonstoichiometric LiCoO2 Imanishi N, Fujii M, Hirano A, Takeda Y |
290 - 293 |
Lithiated cobaltates for lithium-ion batteries - Structure, morphology and electrochemistry of oxides grown by solid-state reaction, wet chemistry and film deposition Julien C, Gastro-Garcia S |
294 - 297 |
Electrophoretic fabrication of LiCoO2 positive electrodes for rechargeable lithium batteries Kanamura K, Goto A, Rho YH, Umegaki T |
298 - 302 |
Physical and electrochemical characterization of LiNi0.8Co0.2O2 thin-film electrodes deposited by laser ablation Wang GX, Lindsay MJ, Ionescu M, Bradhurst DH, Dou SX, Liu HK |
303 - 307 |
Synthesis of LiA1(y)Co(1-y)O(2) using acrylic acid and its electrochemical properties for Li rechargeable batteries Yoon WS, Lee KK, Kim KB |
308 - 312 |
Characterization of LiNi0.85Co0.10M0.05O2 (M = Al, Fe) as a cathode material for lithium secondary batteries Lee KK, Yoon WS, Kim KB, Lee KY, Hong ST |
313 - 315 |
Yttrium-doped Li(Ni, Co)O-2: an improved cathode for Li-ion batteries Rao GS, Chowdari BVR, Lindner HJ |
316 - 320 |
The role of nickel content on the structure and electrochemical properties of Li-x(NiyCo1-y)O-2 Gover RKB, Kanno R, Mitchell BJ, Hirano A, Kawamoto Y |
321 - 325 |
Thermal behavior and the decomposition mechanism of electrochemically delithiated Li1-xNiO2 Lee KK, Yoon WS, Kim KB, Lee KY, Hong ST |
326 - 327 |
Changes in electronic structure by Li ion deintercalation in LiNiO2 from nickel L-edge and OK-edge XANES Uchimoto Y, Sawada H, Yao T |
328 - 331 |
Electronic structure of LixNiOy thin films Urbano A, deCastro SC, Landers R, Morais J, Siervo AD, Gorenstein A, Tabacniks MH, Fantini MCA |
332 - 335 |
Low temperature lithium manganese cobalt oxide spinels, Li4-xMn5-2xCo3xO12 (0 <= x <= 1), for use as cathode materials in rechargeable lithium batteries Robertson AD, Armstrong AR, Bruce PG |
336 - 343 |
Synthesis and characterization of Li2Mn4O9 cathode material Kilroy WP, Ferrando WA, Dallek S |
344 - 348 |
Highly rechargeable LixMnO2+delta oxides synthesized via low temperatures techniques Franger S, Bach S, Pereira-Ramos JP, Baffier N |
349 - 353 |
Voltage prediction from Coulomb potential created by atoms of spinel LiMn2O4 cathode active material for Li ion cells Yamaki J, Egashira M, Okada S |
354 - 357 |
Influences of the electrolyte composition on the charge and discharge characteristics of LiCr0.1Mn1.9O4 positive electrode Morita M, Nakagawa T, Yamada O, Yoshimoto N, Ishikawa M |
358 - 360 |
Advantages of blending LiNi0.8Co0.2O2 into Li1+xMn2-xO4 cathodes Numata T, Amemiya C, Kumeuchi T, Shirakata M, Yonezawa M |
361 - 365 |
Effects of conducting carbon on the electrochemical performance of LiCoO2 and LiMn2O4 cathodes Liu ZL, Lee JY, Lindner HJ |
366 - 370 |
Improved cycle performance of orthorhombic LiMn0.95-xMxCr0.05O2; M = Al, Ga, Yb and In, synthesized by hydrothermal technique Sakurai T, Kimura T, Sugihara T |
371 - 376 |
Lithium transport through Li1-delta Mn2O4 electrode involving the ordering of lithium ion by numerical analysis of current transient Pyun SI, Kim SW |
377 - 380 |
Mechanisms of manganese spinels dissolution and capacity fade at high temperature Aoshima T, Okahara K, Kiyohara C, Shizuka K |
381 - 384 |
Li2Mn4O9 revisited: crystallographic and electrochemical studies Strobel P, Palos AI, Anne M |
385 - 388 |
Cyclic voltammetric study on stoichiometric spinel LiMn2O4 electrode at elevated temperature Ma SH, Noguchi H, Yoshio M |
389 - 392 |
Synthesis and characterization of Li2MxMn4-xO8 (M = Co, Fe) as positive active materials for lithium-ion cells Bonino F, Panero S, Satolli D, Scrosati B |
393 - 397 |
Synthesis of nanocrystalline layered manganese oxides by the electrochemical reduction of AMnO(4) (A = K, Li) Moore GJ, Portal R, La Salle ALG, Guyomard D |
398 - 401 |
On the role of defects in decreasing the extra 3.3/3.95 and 4.5 V redox steps in Li-Mn-O spinels Palacin MR, Rousse G, Morcrette M, Dupont L, Masquelier C, Chabre Y, Hervieu M, Tarascon JM |
402 - 405 |
Mechanochemical synthesis of Li-Mn-O spinels: positive electrode for lithium batteries Soiron S, Rougier A, Aymard L, Tarascon JM |
406 - 411 |
Mechanochemical way for preparation of disordered lithium-manganese spinel compounds Kosova NV, Devyatkina ET, Kozlova SG |
412 - 414 |
In situ XAFS study of the electrochemical deintercalation of Li from Li1-xMn2-yCryO4 (y=1/9, 1/6, 1/3) Nakai I, Yasaka K, Sasaki H, Terada Y, Ikuta H, Wakihara M |
415 - 419 |
Preparation of lithium manganese oxides containing iron Tabuchi M, Shigemura H, Ado K, Kobayashi H, Sakaebe H, Kageyama H, Kanno R |
420 - 422 |
Study of Mn dissolution from LiMn2O4 spinel electrodes using in situ total reflection X-ray fluorescence analysis and fluorescence XAFS technique Terada Y, Nishiwaki Y, Nakai I, Nishikawa F |
423 - 426 |
Synthesis and structures of lithium manganese oxide spinel, LiMn2O4-delta (0 <=delta <= 0.27) Kanno R, Yonemura M, Kohigashi T, Kawamoto Y, Tabuchi M, Kamiyama T |
427 - 429 |
Storage and cycling performance of Stoichiometric spinel at elevated temperatures Wang X, Yagi Y, Lee YS, Yoshio M, Xia Y, Sakai T |
430 - 432 |
Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A |
433 - 436 |
Li1+delta Mn2-delta O4 performance measured by leaching Kelder EM, Ooms FJB, Perego R, Schoonman J |
437 - 442 |
Ammonia- and lithia-doped manganese dioxide for 3 V lithium batteries Johnson CS, Thackeray MM |
443 - 446 |
Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method Hwang BJ, Santhanam R, Liu DG |
447 - 449 |
Electrochemical performance of cathodes based on LiMn2O4 spinel obtained by combustion synthesis Santiago EI, Amancio ST, Bueno PR, Bulhoes LOS |
450 - 453 |
Electrochemical characteristics of LiMn2O4-polypyrrole composite cathode for lithium polymer batteries Kim JU, Jeong IS, Moon SI, Gu HB |
454 - 457 |
Lattice parameter as a measure of electrochemical properties of LiMn2O4 Chung HT, Myung ST, Cho TH, Son JT |
458 - 460 |
Influence of the particle size on the electrochemical properties of lithium manganese oxide Lu CH, Lin SW |
461 - 464 |
EELS analysis of electrochemically deintercalated Li1-xMn2O4 and substituted spinels LiMn1.6M0.4O4 (M = Co, Cr, Ni) Shiraishi Y, Nakai I, Kimoto K, Matsui Y |
465 - 468 |
Electrochemical properties and structures of the mixed-valence lithium cuprates Li3Cu2O4 and Li2NaCu2O4 Raekelboom EA, Hector AL, Weller MT, Owen JR |
469 - 472 |
Electrochemical and synchrotron XAS studies of lithium intercalation into vanadium pentoxide aerogels and nanocomposites Smyrl WH, Passerini S, Giorgetti M, Coustier F, Fay MM, Owens BB |
473 - 477 |
The kinetics of lithium transport through vanadium pentoxide composite and film electrodes by current transient analysis Pyun SI, Lee MH, Shin HC |
478 - 481 |
Correlation between structural and electrochemical properties of Li metal vanadates Arrabito M, Bodoardo S, Penazzi N, Panero S, Reale P, Scrosati B, Wang Y, Guo X, Greenbaum SG |
482 - 485 |
Li-insertion into thin monolithic V2O5 films electrodes characterized by a variety of electroanalytical techniques Levi MD, Lu Z, Aurbach D |
486 - 490 |
Study of lithium insertion into electrochemically synthesized sodium-vanadium oxide Aurbach D, Markovsky B, Salitra G, Cohen Y, Shembel E, Apostolova R, Nagirny V |
491 - 493 |
General behavior upon cycling of LiNiVO4 as battery electrode Rossignol C, Ouvrard G |
494 - 497 |
Use of pure and cobalt-added aluminum vanadates as cathodes in lithium rechargeable cells Andrukaitis E, Hill IR, Torlone GL |
498 - 502 |
The source of first-cycle capacity loss in LiFePO4 Andersson AS, Thomas JO |
503 - 507 |
Electroactivity of natural and synthetic triphylite Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M |
508 - 511 |
Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries Takahashi M, Tobishima S, Takei K, Sakurai Y |
512 - 514 |
Magnesium insertion into Mg0.5+y(FeyTi1-y)2(PO4)(3) Makino K, Katayama Y, Miura T, Kishi T |
515 - 517 |
Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode Kumagai N, Komaba S, Sakai H, Kumagai N |
518 - 524 |
Recent investigations on thin films and single particles of transition metal oxides for lithium batteries Uchida I, Mohamedi M, Dokko K, Nishizawa M, Itoh T, Umeda M |
525 - 528 |
On the correlation between the electroanalytical behavior and crystallographic features of Li-intercalation electrodes Levi MD, Levi E, Aurbach D, Schmidt M, Oesten R, Heider U |
529 - 531 |
Lithium diffusion mechanisms in layered intercalation compounds Van der Ven A, Ceder G |
532 - 534 |
Electrochemical performance of different Li-VOPO4 systems Dupre N, Gaubicher J, Angenault J, Wallez G, Quarton M |
535 - 540 |
Soft-combustion synthesis of a new cathode-active material, LiVWO6, for lithium-ion batteries Prabaharan SRS, Yong TT, Fauzi A, Michael MS |
541 - 544 |
Electrochemical characterization of a new high capacity cathode Storey C, Kargina I, Grincourt Y, Davidson IJ, Yoo YC, Seung DY |
545 - 547 |
Promising thin films (WO1.05S2 and WO1.35S2.2) as positive electrode materials in microbatteries Martin-Litas I, Vinatier P, Levasseur A, Dupin JC, Gonbeau D |
548 - 550 |
Lithium insertion into (V1-yMoy)(2)O-5 Eguchi M, Maki F, Iwabe S, Momose Y |
551 - 554 |
Effect of lanthanum dopant on the structural and electrical properties of LiCoVO4 cathode materials investigated by EXAFS Hwang BJ, Tsai YW, Fey GTK, Lee JF |
555 - 556 |
Degradation of cathodic sulphide materials in melted electrolytes Dusheiko VA |
557 - 560 |
Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries Schmidt M, Heider U, Kuehner A, Oesten R, Jungnitz M, Ignat'ev N, Sartori P |
561 - 565 |
Application to lithium battery electrolyte of lithium chelate compound with boron Sasaki Y, Handa M, Sekiya S, Kurashima K, Usami K |
566 - 569 |
Synthesis of a new family of fluorinated boronate compounds as anion receptors and studies of their use as additives in lithium battery electrolytes Lee HS, Yang YQ, Sun X, McBreen J |
570 - 575 |
Thermal stability of LiPF6-EC : EMC electrolyte for lithium ion batteries Botte GG, White RE, Zhang ZM |
576 - 580 |
New Li-ion electrolytes for low temperature applications Herreyre S, Huchet O, Barusseau S, Perton F, Bodet JM, Biensan P |
581 - 583 |
Electronic structures and electrochemical properties of LiPF6-n(CF3)(n) Kita F, Sakata H, Kawakami A, Kamizori H, Sonoda T, Nagashima H, Pavlenko NV, Yagupolskii YL |
584 - 588 |
Database and models of electrolyte solutions for lithium battery Zhang SJ, Tsuboi A, Nakata H, Ishikawa T |
589 - 591 |
Effect of organic additives in electrolyte solutions on behavior of lithium metal anode Matsuda Y, Takemitsu T, Tanigawa T, Fukushima T |
592 - 594 |
Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes? Wrodnigg GH, Besenhard JO, Winter M |
595 - 597 |
Fluorinated organic solvents in electrolytes for lithium ion cells Moller KC, Hodal T, Appel WK, Winter M, Besenhard JO |
598 - 601 |
Performance of Solupor (R) separator materials in lithium ion batteries Ooms FGB, Kelder EM, Schoonman J, Gerrits N, Smedinga J, Calis G |
602 - 605 |
Temperature and concentration effects on the conductivity of LiAlCl4/SOCl2 electrolyte solutions Fey GTK, Liu WK, Chang YC |
606 - 609 |
Mass transport and kinetic aspects of thionyl chloride reduction at the platinum microelectrode Fey GTK, Hsieh MC, Chang YC |
610 - 615 |
Glassy materials for lithium batteries: electrochemical properties and devices performances Duclot M, Souquet JL |
616 - 620 |
Electrochemical characteristics of polymer electrolytes based on P(VdF-co-HFP)/PMMA ionomer blend for PLIB Lee YG, Park JK |
621 - 623 |
Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries Sadoway DR, Huang BY, Trapa PE, Soo PP, Bannerjee P, Mayes AM |
624 - 627 |
The effects of chemical composition of adsorbed molecular layers on lithium electrode/polymer electrolyte interface stabilization Le Granvalet-Mancini M, Teeters D |
628 - 631 |
Ion diffusion mechanisms in the cross-linked poly(ether) doped with LiN(CF3SO2)(2) Aihara Y, Hayamizu K, Sugimoto K, Bando T, Iguchi T, Kuratomi J, Ono T, Kuwana K |
632 - 636 |
Studies of the interface between lithium electrodes and polymeric electrolyte systems using in situ FTIR spectroscopy Chusid O, Gofer Y, Aurbach D, Watanabe M, Momma T, Osaka T |
637 - 640 |
Polymer electrolytes based on hyperbranched polymers Itoh T, Hirata N, Wen ZY, Kubo M, Yamamoto O |
641 - 643 |
Self-tracking, solvent-free low-dimensional polymer electrolyte blends with lithium salts Zheng Y, Chia F, Ungar G, Wright PV |
644 - 648 |
Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E |
649 - 653 |
Preparation of microporous PVDF based polymer electrolytes Huang HT, Wunder SL |
654 - 656 |
Ionic conduction and electrochemical properties of new poly(acrylonitrile-itaconate)-based gel polymer electrolytes Kim YW, Gong MS, Choi BK |
657 - 660 |
Structure, porosity and conductivity of PVdF films for polymer electrolytes Magistris A, Mustarelli P, Parazzoli F, Quartarone E, Piaggio P, Bottino A |
661 - 663 |
Preparation of a PVdF-HFP/polyethylene composite gel electrolyte with shutdown function for lithium-ion secondary battery Liu XJ, Kusawake H, Kuwajima S |
664 - 666 |
Use of grafted PVdF-based polymers in lithium batteries Jarvis CR, Macklin WJ, Macklin AJ, Mattingley NJ, Kronfli E |
667 - 670 |
Concentrational changes in PAN-based polymer gel electrolyte under current flow: in situ micro-Raman investigation Ostrovskii D, Jacobsson P |
671 - 673 |
Novel superacid-based lithium electrolytes for lithium ion and lithium polymer rechargeable batteries Venkatasetty HV |
674 - 676 |
High energy density, thin-film, rechargeable lithium batteries for marine field operations Huang BY, Cook CC, Mui S, Soo PP, Staelin DH, Mayes AM, Sadoway DR |
677 - 680 |
New thin lithium-ion batteries using a liquid electrolyte with thermal stability Takami N, Sekino M, Ohsaki T, Kanda M, Yamamoto M |
681 - 683 |
A study of the overcharge reaction of lithium-ion batteries Leising RA, Palazzo MJ, Takeuchi ES, Takeuchi KJ |
684 - 687 |
Factors responsible for impedance rise in high power lithium ion batteries Amine K, Chen CH, Liu J, Hammond M, Jansen A, Dees D, Bloom I, Vissers D, Henriksen G |
688 - 692 |
Comparative study of thermal behaviors of various lithium-ion cells Saito Y, Takano K, Kanari K, Negishi A, Nozaki K, Kato K |
693 - 696 |
Thermal behaviors of lithium-ion cells during overcharge Saito Y, Takano K, Negishi A |
697 - 701 |
Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test Takei K, Kumai K, Kobayashi Y, Miyashiro H, Terada N, Iwahori T, Tanaka T |
702 - 710 |
A new method to study Li-ion cell safety: laser beam initiated reactions on both charged negative and positive electrodes Peres JP, Perton F, Audry C, Biensan P, de Guibert A, Blanc G, Broussely M |
711 - 713 |
Lithium ion cells using a new high capacity cathode Grincourt Y, Storey C, Davidson IJ |
714 - 718 |
Characterization of lithium-thionyl chloride cells by impedance techniques Walsh F, Pozin M, Cherniy A, Tikhonov K |
719 - 721 |
Manganese type lithium ion battery for pure and hybrid electric vehicles Horiba T, Hironaka K, Matsumura T, Kai T, Koseki M, Muranaka Y |
722 - 725 |
Performance characteristics of LiMn2O4/polymer/carbon electrochemical cells Kamarulzaman N, Osman Z, Muhamad MR, Ibrahim ZA, Arof AK, Mohamed NS |
726 - 732 |
Cooperative research on safety fundamentals of lithium batteries Selman JR, Al Hallaj S, Uchida I, Hirano Y |
733 - 735 |
Development of high energy density Li-ion batteries based on LiNi1-x-yCoxAlyO2 Weaving JS, Coowar F, Teagle DA, Cullen J, Dass V, Bindin P, Green R, Macklin WJ |
736 - 738 |
Recycling of lithium ion cells and batteries Lain MJ |
739 - 741 |
The role of lithium batteries in modem health care Holmes CF |
742 - 746 |
The future of lithium and lithium-ion batteries in implantable medical devices Schmidt CL, Skarstad PM |
747 - 749 |
Primary batteries for implantable pacemakers and defibrillators Drews J, Fehrmann G, Staub R, Wolf R |
750 - 754 |
Medical batteries for external medical devices Passerini S, Owens BB |
755 - 757 |
The status of Sony Li-ion polymer battery Kezuka K, Hatazawa T, Nakajima K |
758 - 761 |
Microstructures effects in plasticized electrodes based on PVDF-HFP for plastic Li-ion batteries Du Pasquier A, Zheng T, Amatucci GG, Gozdz AS |
762 - 764 |
Research on highly reliable solid-state lithium batteries in NIRIM Takada K, Inada T, Kajiyama A, Kouguchi M, Kondo S, Watanabe M |
765 - 767 |
Lithium metal/polymer battery Osaka T, Momma T |
768 - 771 |
Overview of ENEA's projects on lithium batteries Alessandrini F, Conte M, Passerini S, Prosini PP |
772 - 774 |
Liquid-free rechargeable Li polymer battery Matsui S, Muranaga T, Higobashi H, Inoue S, Sakai T |
775 - 778 |
High temperature stable lithium-ion polymer battery Park CK, Kakirde A, Ebner W, Manivannan V, Chai C, Ihm DJ, Shim YJ |
779 - 781 |
Solid polymer electrolyte cells using SnSb/Li2.6Co0.4N composite anodes Yang J, Takeda Y, Li Q, Imanishi N, Yamamoto O |
782 - 785 |
Development of a bipolar Li/composite polymer electrolyte/pyrite battery for electric vehicles Livshits V, Blum A, Strauss E, Ardel G, Golodnitsky D, Peled E |
786 - 789 |
The two-phase battery concept: a new strategy for high performance lithium polymer batteries Prosini PP, Carewska M, Alessandrini F, Passerini S |
790 - 794 |
Investigation on lithium-polymer electrolyte batteries Appetecchi GB, Alessandrini F, Carewska M, Caruso T, Prosini PP, Scaccia S, Passerini S |
795 - 797 |
Cycling performances and interfacial properties of a Li/PEO-Li(CF3SO2)(2)N-ceramic filler/LiNi0.8Co0.2O2 cell Li Q, Takeda Y, Imanish N, Yang J, Sun HY, Yamamoto O |
798 - 800 |
Fabrication and clcctrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of LiMn2O4 positive and V2O5 negative electrodes Baba M, Kumagai N, Fujita N, Ohta K, Nishidate K, Komaba S, Groult H, Devilliers D, Kaplan B |
801 - 803 |
Development of solid polymer lithium secondary batteries Kuratomi J, Iguchi T, Bando T, Aihara Y, Ono T, Kuwana K |
804 - 806 |
Onset of dendritic growth in lithium/polymer cells Rosso M, Gobron T, Brissot C, Chazalviel JN, Lascaud S |
807 - 811 |
Advanced capacitors and their application Nomoto S, Nakata H, Yoshioka K, Yoshida A, Yoneda H |
812 - 815 |
Polymer-based supercapacitors Mastragostino M, Arbizzani C, Soavi F |
816 - 818 |
Quinone-introduced oligomeric supramolecule for supercapacitor Suematsu S, Naoi K |
819 - 821 |
New gel electrolytes for batteries and supercapacitor applications Chojnacka J, Acosta JL, Morales E |
822 - 825 |
Nanotubular materials for supercapacitors Frackowiak E, Jurewicz K, Delpeux S, Beguin F |
826 - 831 |
Challenges in making of thin films for LixMnyO4 rechargeable lithium batteries for MEMS Singh D, Houriet R, Giovannini R, Hofmann H, Craciun V, Singh RK |