191 - 193 |
Compare and contrast as microscopes get up close and personal Toumey C |
195 - 196 |
NANOBIOTECHNOLOGY A new look for nanopore sensing Albrecht T |
196 - 197 |
NANOELECTRONICS Making light of electrons Goldhaber-Gordon D |
197 - 198 |
NANOELECTRONICS A topological twist for transistors Xue QK |
198 - 199 |
SPIN PHYSICS DNA spintronics sees the light Di Ventra M, Pershin YV |
199 - 200 |
RANDOM MATERIALS Localization on the nanoscale Egami T |
200 - 201 |
NANOMATERIALS Exfoliating the inorganics Golberg D |
203 - 215 |
Comparative advantages of mechanical biosensors Arlett JL, Myers EB, Roukes ML |
216 - 221 |
Manipulating surface states in topological insulator nanoribbons Xiu FX, He LA, Wang Y, Cheng LN, Chang LT, Lang MR, Huang GA, Kou XF, Zhou Y, Jiang XW, Chen ZG, Zou J, Shailos A, Wang KL |
222 - 225 |
Gate-controlled guiding of electrons in graphene Williams JR, Low T, Lundstrom MS, Marcus CM |
226 - 231 |
Controlling single-molecule conductance through lateral coupling of pi orbitals Diez-Perez I, Hihath J, Hines T, Wang ZS, Zhou G, Mullen K, Tao NJ |
232 - 236 |
Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors Lang XY, Hirata A, Fujita T, Chen MW |
237 - 241 |
A size-dependent nanoscale metal-insulator transition in random materials Chen ABK, Kim SG, Wang YD, Tung WS, Chen IW |
242 - 246 |
Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond Zhao N, Hu JL, Ho SW, Wan JTK, Liu RB |
247 - 252 |
Transforming C-60 molecules into graphene quantum dots Lu J, Yeo PSE, Gan CK, Wu P, Loh KP |
253 - 260 |
Controlling protein translocation through nanopores with bio-inspired fluid walls Yusko EC, Johnson JM, Majd S, Prangkio P, Rollings RC, Li JL, Yang J, Mayer M |