151 - 151 |
Risks and benefits [Anonymous] |
153 - 155 |
What drives public acceptance of nanotechnology? Currall SC, King EB, Lane N, Madera J, Turner S |
157 - 158 |
How to commercialize nanotechnology Helmus MN |
163 - 164 |
Electronic materials - Buckling down for flexible electronics Lu XM, Xia YN |
164 - 165 |
Nanomaterials - Live-action alloy nanowires van Ruitenbeek J |
166 - 167 |
Nanomedicine - New material stops bleeding in a hurry Hartgerink JD |
167 - 168 |
Device physics - Super-semiconducting nanowires Belzig W |
169 - 170 |
Molecular self-assembly - Another brick in the wall Zhang SG |
170 - 170 |
Surface patterning: Fullerenes line up Chun AL |
171 - U4 |
Nanoelectronics - New life for the'dead layer' Rabe KM |
173 - 181 |
Electron transport in molecular junctions Tao NJ |
182 - 185 |
Experimental realization of suspended atomic chains composed of different atomic species Bettini J, Sato F, Coura PZ, Dantas SO, Galvao DS, Ugarte D |
186 - 189 |
Epitaxial growth of silicon nanowires using an aluminium catalyst Wang YW, Schmidt V, Senz S, Gosele U |
190 - U5 |
Programmable self-assembly of metal ions inside artificial DNA duplexes Tanaka K, Clever GH, Takezawa Y, Yamada Y, Kaul C, Shionoya M, Carell T |
195 - 200 |
Controlled patterning of aligned self-assembled peptide nanotubes Reches M, Gazit E |
201 - 207 |
Controlled buckling of semiconductor nanoribbons for stretchable electronics Sun YG, Choi WM, Jiang HQ, Huang YGY, Rogers JA |
208 - 213 |
Ge/Si nanowire mesoscopic Josephson junctions Xiang J, Vidan A, Tinkham M, Westervelt RM, Lieber CM |
214 - 220 |
Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, McKendry R, Guntgerodt HJ, Hegner M, Gerber C |