1 |
KERNEL ABSOLUTE SUMMABILITY IS SUFFICIENT BUT NOT NECESSARY FOR RKHS STABILITY Bisiacco M, Pillonetto G SIAM Journal on Control and Optimization, 58(4), 2006, 2020 |
2 |
System identification using kernel-based regularization: New insights on stability and consistency issues Pillonetto G Automatica, 93, 321, 2018 |
3 |
On the stability of reproducing kernel Hilbert spaces of discrete-time impulse responses Chen TS, Pillonetto G Automatica, 95, 529, 2018 |
4 |
Regularized linear system identification using atomic, nuclear and kernel-based norms: The role of the stability constraint Pillonetto G, Chen TS, Chiuso A, De Nicolao G, Ljung L Automatica, 69, 137, 2016 |
5 |
KERNELS FOR LINEAR TIME INVARIANT SYSTEM IDENTIFICATION Dinuzzo F SIAM Journal on Control and Optimization, 53(5), 3299, 2015 |
6 |
Kernel methods in system identification, machine learning and function estimation: A survey Pillonetto G, Dinuzzo F, Chen TS, De Nicolao G, Ljung L Automatica, 50(3), 657, 2014 |
7 |
Consistent identification of Wiener systems: A machine learning viewpoint Pillonetto G Automatica, 49(9), 2704, 2013 |
8 |
Regularized spectrum estimation using stable spline kernels Bottegal G, Pillonetto G Automatica, 49(11), 3199, 2013 |
9 |
Distributed parametric and nonparametric regression with on-line performance bounds computation Varagnolo D, Pillonetto G, Schenato L Automatica, 48(10), 2468, 2012 |
10 |
Stochastic control with imperfect models Basu A, Borkar VS SIAM Journal on Control and Optimization, 47(3), 1274, 2008 |