1 |
Unveiling the gas-dependent sintering behavior of Au-TiO2 catalysts via environmental transmission electron microscopy Li GX, Fang K, Chen YZ, Ou Y, Mao SJ, Yuan WT, Wang Y, Yang HS, Zhang Z, Wang Y Journal of Catalysis, 388, 84, 2020 |
2 |
In situ observation of hydride nucleation and selective growth in magnesium thin-films with environmental transmission electron microscopy Hamm M, Bongers MD, Roddatis V, Dietrich S, Lang KH, Pundt A International Journal of Hydrogen Energy, 44(60), 32112, 2019 |
3 |
Investigations of soot combustion on yttria-stabilized zirconia by environmental transmission electron microscopy (ETEM) Serve A, Epicier T, Aouine M, Aires FJCS, Obeid E, Tsampas M, Pajot K, Vernoux P Applied Catalysis A: General, 504, 74, 2015 |
4 |
Direct evidence of active and inactive phases of Fe catalyst nanoparticles for carbon nanotube formation Mazzucco S, Wang Y, Tanase M, Picher M, Li K, Wu ZJ, Irle S, Sharma R Journal of Catalysis, 319, 54, 2014 |
5 |
In-Situ Reduction of Promoted Cobalt Oxide Supported on Alumina by Environmental Transmission Electron Microscopy Dehghan R, Hansen TW, Wagner JB, Holmen A, Rytter E, Borg O, Walmsley JC Catalysis Letters, 141(6), 754, 2011 |
6 |
Environmental transmission electron microscopy observations of the growth of carbon nanotubes under nanotube-nanotube and nanotube-substrate interactions Yoshida H, Uchiyama T, Kohno H, Takeda S Applied Surface Science, 254(23), 7586, 2008 |
7 |
Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts Liu RJ, Crozier PA, Smith CM, Hucul DA, Blackson J, Salaita G Applied Catalysis A: General, 282(1-2), 111, 2005 |