1 |
A density-dependent modified Drucker-Prager Cap model for die compaction of Ag57.6-Cu22.4-Sn10-In10 mixed metal powders Zhou MC, Huang SY, Hu JH, Lei Y, Xiao Y, Li B, Yan SW, Zou FL Powder Technology, 305, 183, 2017 |
2 |
Experiment and finite element analysis of compaction densification mechanism of Ag-Cu-Sn-In mixed metal powder Zhou MC, Huang SY, Hu JH, Lei Y, Zou FL, Yan SW, Yang M Powder Technology, 313, 68, 2017 |
3 |
Fast modeling of clam-shell drop morphologies on cylindrical surfaces Lu ZP, Ng TW, Yu Y International Journal of Heat and Mass Transfer, 93, 1132, 2016 |
4 |
Effect of roll compactor sealing system designs: A finite element analysis Mazor A, Perez-Gandarillas L, de Ryck A, Michrafy A Powder Technology, 289, 21, 2016 |
5 |
Determination of the constants of cap model for compaction of three metal powders Majzoobi GH, Jannesari S Advanced Powder Technology, 26(3), 928, 2015 |
6 |
Physical interpretations for cap parameters of the modified Drucker-Prager cap model in relation to the deviator stress curve of a particulate compact in conventional triaxial testing Shin H, Kim JB Powder Technology, 280, 94, 2015 |
7 |
Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations Fleckenstein S, Bothe D Chemical Engineering Science, 102, 514, 2013 |
8 |
Finite Element Method (FEM) modeling of the powder compaction of cosmetic products: Comparison between simulated and experimental results Diarra H, Mazel V, Boillon A, Rehault L, Busignies V, Bureau S, Tchoreloff P Powder Technology, 224, 233, 2012 |
9 |
Numerical Investigation of Stress Distribution during Die Compaction of Food Powders Prigge JD, Sommer K Particulate Science and Technology, 29(1), 40, 2011 |
10 |
High-pressure compaction modelling of calcite (CaCO3) powder compact Berg S, Haggblad HA, Jonsen P Powder Technology, 206(3), 259, 2011 |