1 |
Enhanced Surface Charge Separation Induced by Ag Nanoparticles on WO3 Photoanode for Photoelectrochemical Water Splitting Li YX, Zhang W, Qiu BJ Chemistry Letters, 49(6), 741, 2020 |
2 |
Facile preparation of nanoflower structured WO3 thin film on etched titanium substrate with high photoelectrochemical performance Gu YJ, Zheng WQ, Bu YY Journal of Electroanalytical Chemistry, 833, 54, 2019 |
3 |
Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting Zhang RK, Ning FY, Xu SM, Zhou L, Shao MF, Wei M Electrochimica Acta, 274, 217, 2018 |
4 |
Enhanced photoelectrochemical water oxidation on WO3 nanoflake films by coupling with amorphous TiO2 Yang MJ, He HC, Zhang HP, Zhong XH, Dong FQ, Ke GL, Chen YQ, Du JY, Zhou Y Electrochimica Acta, 283, 871, 2018 |
5 |
Ultrafast fabrication of nanostructure WO3 photoanodes by hybrid microwave annealing with enhanced photoelectrochemical and photoelectrocatalytic activities Liu WH, Yang YH, Zhan F, Li DW, Li YM, Tang XD, Li WZ, Li J International Journal of Hydrogen Energy, 43(18), 8770, 2018 |
6 |
A novel visible-light responsive photocatalytic fuel cell with a heterostructured BiVO4/WO3 photoanode and a Pt/C air-breathing cathode Xie S, Ouyang K, Ye XY Journal of Colloid and Interface Science, 532, 758, 2018 |
7 |
Renewable energy production by photoelectrochemical oxidation of organic wastes using WO3 photoanodes Raptis D, Dracopoulos V, Lianos P Journal of Hazardous Materials, 333, 259, 2017 |