1 |
Adjusting the morphology of poly(vinylidene fluoride-co-hexafluoropropylene) membranes by the VIPS process for efficient oil-rich emulsion separation Chang HY, Venault A Journal of Membrane Science, 581, 178, 2019 |
2 |
Direct in-situ modification of PVDF membranes with a zwitterionic copolymer to form bi-continuous and fouling resistant membranes Dizon GV, Venault A Journal of Membrane Science, 550, 45, 2018 |
3 |
Zwitterionic bi-continuous membranes from a phosphobetaine copolymer/poly(vinylidene fluoride) blend via VIPS for biofouling mitigation Venault A, Hsu CH, Ishihara K, Chang Y Journal of Membrane Science, 550, 377, 2018 |
4 |
Antifouling PVDF membrane prepared by VIPS for microalgae harvesting Venault A, Ballad MRB, Huang YT, Liu YH, Kao CH, Chang Y Chemical Engineering Science, 142, 97, 2016 |
5 |
Design of PVDF/PEGMA-b-PS-b-PEGMA membranes by VIPS for improved biofouling mitigation Carretier S, Chen LA, Venault A, Yang ZR, Aimar P, Chang Y Journal of Membrane Science, 510, 355, 2016 |
6 |
Fabricating hemocompatible bi-continuous PEGylated PVDF membranes via vapor-induced phase inversion Venault A, Wu JR, Chang Y, Aimar P Journal of Membrane Science, 470, 18, 2014 |
7 |
Validation of Mass-Transfer Model for VIPS Process using In Situ Measurements Performed by Near-Infrared Spectroscopy Bouyer D, Pochat-Bohatier C AIChE Journal, 59(2), 671, 2013 |
8 |
Surface anti-biofouling control of PEGylated poly(vinylidene fluoride) membranes via vapor-induced phase separation processing Venault A, Chang Y, Wang DM, Lai JY Journal of Membrane Science, 423, 53, 2012 |
9 |
Modeling the Mass Transfers During the Elaboration of Chitosan-Activated Carbon Composites for Medical Applications Venault A, Bouyer D, Pochat-Bohatier C, Faur C, Vachoud L AIChE Journal, 56(6), 1593, 2010 |