1 |
Size, effective density, morphology, and nano-structure of soot particles generated from buoyant turbulent diffusion flames Kazemimanesh M, Dastanpour R, Baldelli A, Moallemi A, Thomson KA, Jefferson MA, Johnso MR, Rogak SN, Olfert JS Journal of Aerosol Science, 132, 22, 2019 |
2 |
Soot temperature and volume fraction retrieval from spectrally resolved flame emission measurement in laminar axisymmetric coflow diffusion flames: Effect of self-absorption Liu FS, Thomson KA, Smallwood GJ Combustion and Flame, 160(9), 1693, 2013 |
3 |
On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame Guo HS, Thomson KA, Smallwood GJ Combustion and Flame, 156(6), 1135, 2009 |
4 |
Effect of fuel nozzle material properties on soot formation and temperature field in coflow laminar diffusion flames Gulder OL, Thomson KA, Snelling DR Combustion and Flame, 144(1-2), 426, 2006 |
5 |
Determination of the morphology of soot aggregates using the relative optical density method for the analysis of TEM images Tian K, Thomson KA, Liu FS, Snelling DR, Smallwood GJ, Wang DS Combustion and Flame, 144(4), 782, 2006 |
6 |
Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures Bento DS, Thomson KA, Gulder OL Combustion and Flame, 145(4), 765, 2006 |
7 |
Numerical and experimental study of an axisymmetric coflow laminar methane-air diffusion flame at pressures between 5 and 40 atmospheres Liu FS, Thomson KA, Guo HS, Smallwood GJ Combustion and Flame, 146(3), 456, 2006 |
8 |
Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 MPa Thomson KA, Gulder OL, Weckman EJ, Fraser RA, Smallwood GJ, Snelling DR Combustion and Flame, 140(3), 222, 2005 |
9 |
Distribution of the number of primary particles of soot aggregates in a nonpremixed laminar fame Tian K, Liu FS, Thomson KA, Snelling DR, Smallwood GJ, Wang DS Combustion and Flame, 138(1-2), 195, 2004 |