1 |
Auto-ignition of thermally thick PMMA exposed to linearly decreasing thermal radiation Gong JH, Zhai CJ, Cao JL, Li J, Yang LZ, Zhou Y, Wang ZR Combustion and Flame, 216, 232, 2020 |
2 |
Opposed flow flame spread over thermally thick solid fuels: buoyant flow suppression, stretch rate theory, and the regressive burning regime Hossain S, Wichman IS, Miller FJ, Olson SL Combustion and Flame, 219, 57, 2020 |
3 |
Modelling the combustion of thermally thick biomass particles Chen T, Ku XK, Lin JZ, Jin HH Powder Technology, 353, 110, 2019 |
4 |
Experimental, numerical and theoretical analyses of the ignition of thermally thick PMMA by periodic irradiation Fang J, Meng YR, Wang JW, Zhao LY, He XZ, Ji J, Zhang YM Combustion and Flame, 197, 41, 2018 |
5 |
Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter Meinier R, Sonnier R, Zavaleta P, Suard S, Ferry L Journal of Hazardous Materials, 342, 306, 2018 |
6 |
Simplification of devolatilization models for thermally-thick particles: Differences between wood logs and pellets Biswas AK, Umeki K Chemical Engineering Journal, 274, 181, 2015 |
7 |
Fast-solving thermally thick model of biomass particles embedded in a CFD code for the simulation of fixed-bed burners Gomez MA, Porteiro J, Patino D, Miguez JL Energy Conversion and Management, 105, 30, 2015 |
8 |
Radiative pyrolysis of wet wood under intermediate heat flux: Experiments and modelling Pozzobon V, Salvador S, Bezian JJ, El-Hafi M, Le Maoult Y, Flamant G Fuel Processing Technology, 128, 319, 2014 |
9 |
A CFD model for thermal conversion of thermally thick biomass particles Mehrabian R, Zahirovic S, Scharler R, Obernberger I, Kleditzsch S, Wirtz S, Scherer V, Lu H, Baxter LL Fuel Processing Technology, 95, 96, 2012 |
10 |
Analytical solutions for prediction of the ignition time of wood particles based on a time and space integral method Haseli Y, van Oijen JA, de Goey LPH Thermochimica Acta, 548, 65, 2012 |