1 |
Synthesis and discharge performances of NiCl2 by surface modification of carbon coating as cathode material of thermal battery Jin CY, Zhou LP, Fu LC, Zhu JJ, Li DY Applied Surface Science, 402, 308, 2017 |
2 |
The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity Jin CY, Zhou LP, Fu LC, Zhu JJ, Li DY, Yang WL Journal of Power Sources, 352, 83, 2017 |
3 |
Electrochemical properties of a lithium-impregnated metal foam anode for thermal batteries Choi YS, Yu HR, Cheong HW Journal of Power Sources, 276, 102, 2015 |
4 |
Hydrothermal synthesized micro/nano-sized pyrite used as cathode material to improve the electrochemical performance of thermal battery Yang ZT, Liu XJ, Feng XL, Cui YX, Yang XW Journal of Applied Electrochemistry, 44(10), 1075, 2014 |
5 |
Copper vanadate as promising high voltage cathodes for Li thermal batteries Hillel T, Ein-Eli Y Journal of Power Sources, 229, 112, 2013 |
6 |
Thermal activated ("thermal") battery technology - Part IIIa: FeS2 cathode material Masset PJ, Guidotti RA Journal of Power Sources, 177(2), 595, 2008 |
7 |
Thermal activated ("thermal") battery technology. Part IIIb. Sulfur and oxide-based cathode materials Masset PJ, Guidotti RA Journal of Power Sources, 178(1), 456, 2008 |
8 |
Simulation of a thermal battery using Phoenics (R) Freitas GCS, Peixoto FC, Vianna AS Journal of Power Sources, 179(1), 424, 2008 |
9 |
Thermally activated ("thermal") battery technology - Part IV. Anode materials Guidotti RA, Masset PJ Journal of Power Sources, 183(1), 388, 2008 |
10 |
Thermal activated (thermal) battery technology - Part II. Molten salt electrolytes Masset P, Guidotti RA Journal of Power Sources, 164(1), 397, 2007 |