1 |
Feedback Stabilization of the Two-Dimensional Navier-Stokes Equations by Value Function Approximation Breiten T, Kunisch K, Pfeiffer L Applied Mathematics and Optimization, 80(3), 599, 2019 |
2 |
Dynamic reconstruction based representation learning for multivariable process monitoring Lv FY, Wen CL, Liu MQ Journal of Process Control, 81, 112, 2019 |
3 |
New facts concerning the approximation of the inverse Langevin function Jedynak R Journal of Non-Newtonian Fluid Mechanics, 249, 8, 2017 |
4 |
A new analytical solution for solving the population balance equation in the continuum-slip regime Yu MZ, Zhang XT, Jin GD, Lin JZ, Seipenbusch M Journal of Aerosol Science, 80, 1, 2015 |
5 |
Approximation of the inverse Langevin function revisited Jedynak R Rheologica Acta, 54(1), 29, 2015 |
6 |
A new based error approach to approximate the inverse langevin function Nguessong AN, Beda T, Peyraut F Rheologica Acta, 53(8), 585, 2014 |
7 |
Second-order Taylor expansion for backward doubly stochastic control system Wang WF, Liu B International Journal of Control, 86(5), 942, 2013 |
8 |
Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model Yu MZ, Lin JZ International Journal of Heat and Mass Transfer, 53(4), 635, 2010 |
9 |
Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime Yu MH, Lin JZ Journal of Aerosol Science, 40(6), 549, 2009 |
10 |
Solution of the agglomerate Brownian coagulation using Taylor-expansion moment method Yu MZ, Lin JZ Journal of Colloid and Interface Science, 336(1), 142, 2009 |