1 |
Extending the Best Linear Approximation Framework to the Process Noise Case Schoukens M, Pintelon R, Dobrowiecki TP, Schoukens J IEEE Transactions on Automatic Control, 65(4), 1514, 2020 |
2 |
Gaussian process regression for the estimation of generalized frequency response functions Stoddard JG, Birpoutsoukis G, Schoukens J, Welsh JS Automatica, 106, 161, 2019 |
3 |
Grey-box state-space identification of nonlinear mechanical vibrations Noel JP, Schoukens J International Journal of Control, 91(5), 1118, 2018 |
4 |
Regularized nonparametric Volterra kernel estimation Birpoutsoukis G, Marconato A, Lataire J, Schoukens J Automatica, 82, 324, 2017 |
5 |
The transient impulse response modeling method for non-parametric system identification Hagg P, Schoukens J, Gevers M, Hjalmarsson H Automatica, 68, 314, 2016 |
6 |
Information matrix and D-optimal design with Gaussian inputs for Wiener model identification Mahata K, Schoukens J, De Cock A Automatica, 69, 65, 2016 |
7 |
D-optimal input design for nonlinear FIR-type systems: A dispersion-based approach De Cock A, Gevers M, Schoukens J Automatica, 73, 88, 2016 |
8 |
Perturbed datasets methods for hypothesis testing and structure of corresponding confidence sets Kolumban S, Vajk I, Schoukens J Automatica, 51, 326, 2015 |
9 |
Structure discrimination in block-oriented models using linear approximations: A theoretic framework Schoukens J, Pintelon R, Rolain Y, Schoukens M, Tiels K, Vanbeylen L, Van Mulders A, Vandersteen G Automatica, 53, 225, 2015 |
10 |
Initial estimates for Wiener-Hammerstein models using phase-coupled multisines Tiels K, Schoukens M, Schoukens J Automatica, 60, 201, 2015 |