1 |
Making sense of parameter estimation and model simulation in bioprocesses Sadino-Riquelme MC, Rivas J, Jeison D, Hayes RE, Donoso-Bravo A Biotechnology and Bioengineering, 117(5), 1357, 2020 |
2 |
A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression Naik J, Dash PK, Dhar S Renewable Energy, 136, 701, 2019 |
3 |
A novel prediction intervals method integrating an error & self-feedback extreme learning machine with particle swarm optimization for energy consumption robust prediction Xu Y, Zhang MQ, Ye LL, Zhu QX, Geng ZQ, He YL, Han YM Energy, 164, 137, 2018 |
4 |
An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine Mahmoud T, Dong ZY, Ma J Renewable Energy, 126, 254, 2018 |
5 |
Interval prediction of solar power using an Improved Bootstrap method Li KW, Wang R, Lei HT, Zhang T, Liu YJ, Zheng XK Solar Energy, 159, 97, 2018 |
6 |
An ensemble prediction intervals approach for short-term PV power forecasting Ni Q, Zhuang SX, Sheng HM, Kang GQ, Xiao J Solar Energy, 155, 1072, 2017 |
7 |
Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates Trapero JR Energy, 114, 266, 2016 |
8 |
Model-free computation of ultra-short-term prediction intervals of solar irradiance Torregrossa D, Le Boudec JY, Paolone M Solar Energy, 124, 57, 2016 |
9 |
Real-time prediction intervals for intra-hour DNI forecasts Chu YH, Li MY, Pedro HTC, Coimbra CFM Renewable Energy, 83, 234, 2015 |
10 |
Quantifying uncertainties of neural network-based electricity price forecasts Khosravi A, Nahavandi S, Creighton D Applied Energy, 112, 120, 2013 |