1 |
Optimization of DEM parameters using multi-objective reinforcement learning Westbrink F, Elbel A, Schwung A, Ding SX Powder Technology, 379, 602, 2021 |
2 |
DEM modelling for flow of cohesive lignocellulosic biomass powders: Model calibration using bulk tests Pachon-Morales J, Do H, Colin J, Puel F, Perre P, Schott D Advanced Powder Technology, 30(4), 732, 2019 |
3 |
A calibration framework for discrete element model parameters using genetic algorithms Do HQ, Aragon AM, Schott DL Advanced Powder Technology, 29(6), 1393, 2018 |
4 |
Proton Exchange Membrane Water Electrolysis Modeling for System Simulation and Degradation Analysis Gossling S, Stypka S, Bahr M, Oberschachtsiek B, Heinzel A Chemie Ingenieur Technik, 90(10), 1437, 2018 |
5 |
Gaussian Mixture Model-Based Ensemble Kalman Filter for Machine Parameter Calibration Fan R, Huang RK, Diao RS IEEE Transactions on Energy Conversion, 33(3), 1597, 2018 |
6 |
First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS) Torre OCDL, Ewoldt RH Korea-Australia Rheology Journal, 30(1), 1, 2018 |
7 |
Calibration of DEM models for irregular particles based on experimental Check for design method and bulk experiments Zhou HL, Hu ZQ, Chen JG, Lv X, Xie N Powder Technology, 332, 210, 2018 |
8 |
Prediction of La0.6Sr0.4CO0.2Fe0.8O3 cathode microstructures during sintering: Kinetic Monte Carlo (KMC) simulations calibrated by artificial neural networks Yan ZL, Kim Y, Hara S, Shikazono N Journal of Power Sources, 346, 103, 2017 |
9 |
Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate Jimenez E, Gimenez JB, Seco A, Ferrer J, Serralta J Bioresource Technology, 124, 478, 2012 |
10 |
Effect of pH and nitrite concentration on nitrite oxidation rate Jimenez E, Gimenez JB, Ruano MV, Ferrer J, Serralta J Bioresource Technology, 102(19), 8741, 2011 |