1 |
Mesh sensitivity analysis on hydrodynamics behavior of a fluidized bed containing silver oxide nanoparticle agglomerates: Transition from bubbling to slugging and turbulent flow regimes Hamidifard S, Bahramian A, Rasteh M Powder Technology, 331, 28, 2018 |
2 |
Quantification of interparticle forces by energy controlled fragmentation analysis Wernet R, Schunck AG, Baumann W, Paur HR, Seipenbusch M Journal of Aerosol Science, 84, 14, 2015 |
3 |
Fragmentation of Gas-Borne Nanoparticle-Agglomerates during Oblique Impaction Gensch M, Weber AP Chemie Ingenieur Technik, 86(3), 270, 2014 |
4 |
Fragmentation of Nanoparticle Agglomerates by Collisions Okada Y, Oshio N, Kudoh S Journal of Chemical Engineering of Japan, 47(12), 864, 2014 |
5 |
Contact behavior of size fractionated TiO2 nanoparticle agglomerates and aggregates Salameh S, Scholz R, Seo JW, Madler L Powder Technology, 256, 345, 2014 |
6 |
Dispersion and filtration of carbon nanotubes (CNTs) and measurement of nanoparticle agglomerates in diesel exhaust Wang J, Pui DYH Chemical Engineering Science, 85, 69, 2013 |
7 |
Fragmentation of Nanoparticle Agglomerates by Collisions in Supersonic Flows Okada Y, Oshio N, Oda K, Kudoh S Journal of Chemical Engineering of Japan, 46(8), 530, 2013 |
8 |
Deagglomeration of Nanoparticle Aggregates via Rapid Expansion of Supercritical or High-Pressure Suspensions To D, Dave R, Yin XL, Sundaresan S AIChE Journal, 55(11), 2807, 2009 |
9 |
Impact fragmentation of metal nanoparticle agglomerates Seipenbusch M, Toneva P, Peukert W, Weber AP Particle & Particle Systems Characterization, 24(3), 193, 2007 |