1 |
Soot aggregate morphology deduced from thermophoretic sampling in coflow laminar methane diffusion flames at pressures up to 30 bar Karatas AE, Gigone B, Gulder OL Combustion and Flame, 222, 411, 2020 |
2 |
On the effect of pressure on soot nanostructure: A Raman spectroscopy investigation Commodo M, Karatas AE, De Falco G, Minutolo P, D'Anna A, Gulder MO Combustion and Flame, 219, 13, 2020 |
3 |
Experimental and numerical study of laminar flame extinction for syngas and syngas-methane blends Wang WC, Karatas AE, Groth CPT, Gulder OL Combustion Science and Technology, 190(8), 1455, 2018 |
4 |
Combined experimental and numerical study of ethanol laminar flame extinction Wang W, Karatas AE, Groth CPT, Gulder OL Combustion Science and Technology, 190(8), 1472, 2018 |
5 |
Effects of carbon dioxide and nitrogen addition on soot processes in laminar diffusion flames of ethylene-air at high pressures Karatas AE, Gulder OL Fuel, 200, 76, 2017 |
6 |
Dependence of sooting characteristics and temperature field of co-flow laminar pure and nitrogen-diluted ethylene-air diffusion flames on pressure Karatas AE, Gulder OL Combustion and Flame, 162(4), 1566, 2015 |
7 |
Numerical and experimental study of the influence of CO2 and N-2 dilution on soot formation in laminar coflow C2H4/air diffusion flames at pressures between 5 and 20 atm Liu FS, Karatas AE, Gulder OL, Gu MY Combustion and Flame, 162(5), 2231, 2015 |
8 |
Sooting behaviour of n-heptane laminar diffusion flames at high pressures Karatas AE, Intasopa G, Guelder OL Combustion and Flame, 160(9), 1650, 2013 |
9 |
Soot formation in high pressure laminar diffusion flames Karatas AE, Gulder OL Progress in Energy and Combustion Science, 38(6), 818, 2012 |