1 |
Kernel functions to flotation bubble size distributions Javor Z, Schreithofer N, Heiskanen K Minerals Engineering, 125, 200, 2018 |
2 |
Characterization of frothers and their behavior using partial molar Excess Gibbs energy Harris MC, O'Connor CT International Journal of Mineral Processing, 158, 63, 2017 |
3 |
The influence of frother types and concentrations on fine particles' entrainment using column flotation Kursun H Separation Science and Technology, 52(4), 722, 2017 |
4 |
Flotation frother mixtures: Decoupling the sub-processes of froth stability, froth recovery and entrainment McFadzean B, Marozva T, Wiese J Minerals Engineering, 85, 72, 2016 |
5 |
Frother analysis in flotation circuits: Refinement of a colorimetric technique Zangooi A, Gomez CO, Finch JA Minerals Engineering, 93, 41, 2016 |
6 |
Break-up in formation of small bubbles: Comparison between low and high frother concentrations Chu PB, Waters KE, Finch JA Minerals Engineering, 96-97, 15, 2016 |
7 |
Gas dispersion properties of collector/frother blends Zhou X, Jordens A, Cappuccitti F, Finch JA, Waters KE Minerals Engineering, 96-97, 20, 2016 |
8 |
Frother structure-property relationship: Aliphatic alcohols and bubble rise velocity Tan YH, Finch JA Minerals Engineering, 96-97, 33, 2016 |
9 |
Textural image classification of foams based on variographic analysis Mesa D, Kracht W, Diaz G Minerals Engineering, 98, 52, 2016 |
10 |
Micro- and nano-scale phenomena effect on bubble size in mechanical flotation cell Javor Z, Schreithofer N, Heiskanen K Minerals Engineering, 70, 109, 2015 |