CH4 Chlorination with Cl2 Using Transition Metal Ion-Exchanged Zeolites

<u>박성현</u>, 권승돈, 최유열, 나경수[†] 전남대학교 (kyungsu_na@chonnam.ac.kr[†])

Conversion of CH_4 to value-added products has been interesting subjects for a long time. Among the capable material of being produced, CH_3Cl , one of the major products of CH_4 chlorination, can be used for starting material that can be converted to hydrocarbons. However, selective production of CH_3Cl with less formation of undesirable chloromethane products is challenging since the reaction with Cl_2 is always accompanied with radicalmediated non-selective chlorination pathway. Previous studies reported that solid acid catalysts can induce polarization of Cl_2 molecule, and radical chlorination process can be shifted to ionic chlorination process. Shifting the reaction process predominantly to the ionic pathway increased the yield of CH_3Cl and decreased the production of polychloromethanes. In our recent study using ion-exchange zeolites series, we found that the production of CH_3Cl could be changed by the chemical properties of introduced metal ions. In this poster, we also used ion-exchanged zeolites which transition metal ions as the catalysts for selective production of CH_3Cl . The resultant series of catalysts exhibited significantly different phenomenon on the CH_3Cl production.