Characterization of NH_3 and N_2O formations through individual reductants (H_2 , CO and HCs) over commercial three-way catalyst (TWC)

> <u>배우빈</u>, 강성봉[†], 김도영, 변상우, 윤달영¹, 정창호¹ 광주과학기술원; ¹현대자동차 촉매연구팀 (sbkang@gist.ac.kr[†])

In the complex reaction network of three-way catalysts (TWC) system, the formations of NH₃ and N₂O are attributed by feed gas composition and individual reductants such as H₂, CO and HCs. Converting 1000 ppm of NO through full feed conditions, the maximum NH₃ formation (800 ppm) was observed under rich condition (0.97 $\leq \lambda < 1.00$) with high temperatures (over 350 °C). We also examined the maximum N₂O formation (210 ppm) under the stoichiometric condition at low temperature range (250-350 °C). To characterize the effects of individual reductants on NH₃ and N₂O formations, simple feed tests consisting of a single reductant (H₂, CO or HCs) with NO, CO₂ and H₂O were conducted. The NH₃ formation is promoted by H₂ in the feed gas and additionally formed H₂ through water gas shift reaction and steam reforming reactions via H₂–NO reaction. In contrast to NH₃, N₂O is closely dependent on CO and/or HCs in the feed gas composition via the formation of surface NCO- species, which was identified by Diffuse Reflectance Infrared Spectroscopy (DRIFTS).