Electrochemical properties and OER performance enhancement by Cu substitution in NiCo2O4 spinel structure grown on Graphite Felt

<u>손남규</u>, 강미숙[†] 영남대학교 (mskang@ynu.ac.kr[†])

In order to improve the electrochemical performance of the NCo_2O_4 material, N ions were partially substituted with Ct^{2+} ions having excellent reducing ability. All of electrodes were fabricated by growing the $N_{1-x}Cu_xCo_2O_4$ electrode spinel-structural active materials onto the graphite felt (GF). Five types of electrodes, NCo_2O_4/GF , $N_{0.875}Cu_{0.125}Co_2O_4/GF$, $N_{0.75}Cu_{0.25}Co_2O_4/GF$, $N_{0.625}Cu_{0.375}Co_2O_4/GF$, and $N_{0.5}Cu_{0.5}Co_2O_4/GF$, were prepared for application to the oxygen evolution reaction (OER). As Ct^{2+} ions were substituted, the electrochemical performances of the NCo_2O_4 -based structures were improved. $N_{0.75}Cu_{0.25}Co_2O_4/GF$ electrode exhibited the best OER activity in a 1.0 M KOH alkaline electrolyte: the cell voltage required to reach a current density of $10 \text{ mA} \text{ cm}^{-2}$ was only 1.74 V (n= 509 mV), and a low Tafel slope of 119 mV dec⁻¹ was obtained. the stability of $N_{0.75}Cu_{0.25}Co_2O_4/GF$ electrode was demonstrated through 1000^{th} repeated OER acceleration stability tests with a high faradaic efficiency of 94.3%.