Investigation of catalytic properties for bimetallic vanadates for selective NO_X reduction

김동호
$1,2$
, 권동욱 1 , 이관영 2 , 하헌필 1 , 김종식 $^{1,+}$ 1 한국과학기술연구원; 2 고려대학교 (jkim 4 0@kist.re.kr $^{+}$)

 V_2O_5 is regarded as a catalytic phase promising to reduce NOx with NH₃, yet, also possesses a spectrum of shortcomings in sustaining NOx reduction performance under severe environments, as specified in our previous works 1 Here, we suggest a synthetic measures to modify the V_2O_5 structure, leading to the creation of a series of equimolar bimetallic vanadates on WO₃-promoted TiO₂, whose chemical formula is RM_{0.5}Er_{0.5}VO₄ (denoted as RM_{0.5}, RM stands for Tb, Er, or Yb). 1 In this presentation, the RM_{0.5} phases were compared with regard to their acidic/redox properties, which were then related with catalytic consequences in reducing NO_X or oxidizing NH₃ at wide temperature domains 1

Reference

[1] J. Kim^{1,*}, D. H. Kim¹, D. W. Kwon, K. Y. Lee, and H. P. Ha*, Appl. Surf. Sci. 518 (2020) 146238.