Modified zirconium-based metal organic framework by 4-aminobenzoic acid to enhance co_2 adsorption performance

Le Van Nhieu, 김진수^{1,†} 경희대학교; ¹경희대 학교 (jkim21@khu.ac.kr[†])

Zr-based MOF (UO-66) is known as a leading candidate of adsorbents applied for gas separation process due to high surface area, easily tuned porous properties; chemical surface and diversity in synthesis method. In compared to other MOF-type, however, UO-66 shows $\rm CO_2$ capture capacity modestly. Therefore, UO-66 material should be modified its characterization to improve $\rm CO_2$ adsorption capacity. In this work, modified UO-66 was prepared in one step synthesis between $\rm ZrCl_4$ and linker mixed by terephthalic acid and 4-aminobenzoic acid (ABA) systematically. The presence of ABA in reaction system induced missing-linker defects, simultaneously appearance of $\rm NH_2$ groups in framework, causing to improve $\rm CO_2$ capture capacity. The obtained materials were analysed by SEM, XRD, FTIR, XPS and TGA. The adsorption isotherms of $\rm CO_2$ and $\rm N_2$ on asprepared adsorbents were recored at 298 K. The results showed that UO-66#10-NH₂ showed a $\rm CO_2$ uptake amount of 2.1 mmol/g, which is higher than that of UO-66 about 45%. Also, the $\rm CO_2/N_2$ selectivities based on ideal adsorbed solution theory (IAST) and isosteric heat of adsorption were investigated to evaluate gas separation performance of adsorbents